Page 25 - Read Online
P. 25

Dababneh et al. Art Int Surg 2024;4:214-32  https://dx.doi.org/10.20517/ais.2024.50                                                    Page 230

               10.      Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical decision-making. JAMA Surg 2020;155:148-58.  DOI
                   PubMed  PMC
               11.      Spoer DL, Kiene JM, Dekker PK, et al. A systematic review of artificial intelligence applications in plastic surgery: looking to the
                   future. Plast Reconstr Surg Glob Open 2022;10:e4608.  DOI  PubMed  PMC
               12.      Dorfman R, Chang I, Saadat S, Roostaeian J. Making the subjective objective: machine learning and rhinoplasty. Aesthet Surg J
                   2020;40:493-8.  DOI  PubMed
               13.      Eldaly AS, Avila FR, Torres-Guzman RA, et al. Simulation and artificial intelligence in rhinoplasty: a systematic review. Aesthetic
                   Plast Surg 2022;46:2368-77.  DOI  PubMed
               14.      Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in
                   surgical innovation. Plast Reconstr Surg 2016;137:890e-7e.  DOI  PubMed
               15.      Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern
                   Med 2018;169:467-73.  DOI  PubMed
               16.      Thibaut G, Dabbagh A, Liverneaux P. Does Google’s Bard Chatbot perform better than ChatGPT on the European hand surgery exam?
                   Int Orthop 2024;48:151-8.  DOI  PubMed
               17.      Arango SD, Flynn JC, Zeitlin J, et al. The performance of ChatGPT on the American society for surgery of the hand self-assessment
                   examination. Cureus 2024;16:e58950.  DOI  PubMed  PMC
               18.      Ghanem D, Nassar JE, El Bachour J, Hanna T. ChatGPT earns American Board Certification in Hand Surgery. Hand Surg Rehabil
                   2024;43:101688.  DOI  PubMed
               19.      Crook BS, Park CN, Hurley ET, Richard MJ, Pidgeon TS. Evaluation of online artificial intelligence-generated information on
                   common hand procedures. J Hand Surg Am 2023;48:1122-7.  DOI  PubMed
               20.      Seth I, Sinkjær Kenney P, Bulloch G, Hunter-Smith DJ, Bo Thomsen J, Rozen WM. Artificial or augmented authorship? A
                   conversation with a chatbot on base of thumb arthritis. Plast Reconstr Surg Glob Open 2023;11:e4999.  DOI  PubMed  PMC
               21.      Leypold T, Schäfer B, Boos A, Beier JP. Can AI think like a plastic surgeon? Evaluating GPT-4’s clinical judgment in reconstructive
                   procedures of the upper extremity. Plast Reconstr Surg Glob Open 2023;11:e5471.  DOI  PubMed  PMC
               22.      Seth I, Xie Y, Rodwell A, et al. Exploring the role of a large language model on carpal tunnel syndrome management: an observation
                   study of ChatGPT. J Hand Surg Am 2023;48:1025-33.  DOI  PubMed
               23.      Seth I, Lim B, Xie Y, Hunter-Smith DJ, Rozen WM. Exploring the role of artificial intelligence chatbot on the management of
                   scaphoid fractures. J Hand Surg Eur Vol 2023;48:814-8.  DOI  PubMed
               24.      Ajmera P, Nischal N, Ariyaratne S, et al. Validity of ChatGPT-generated musculoskeletal images. Skeletal Radiol 2024;53:1583-93.
                   DOI  PubMed
               25.      Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88:581-6.
                   DOI  PubMed  PMC
               26.      Lee KC, Choi IC, Kang CH, et al. Clinical validation of an artificial intelligence model for detecting distal radius, ulnar styloid, and
                   scaphoid fractures on conventional wrist radiographs. Diagnostics 2023;13:1657.  DOI  PubMed  PMC
               27.      Lindsey R, Daluiski A, Chopra S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A
                   2018;115:11591-6.  DOI  PubMed  PMC
               28.      Cohen M, Puntonet J, Sanchez J, et al. Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs. Eur
                   Radiol 2023;33:3974-83.  DOI  PubMed
               29.      Hardalaç F, Uysal F, Peker O, et al. Fracture detection in wrist x-ray images using deep learning-based object detection models.
                   Sensors 2022;22:1285.  DOI  PubMed  PMC
               30.      Lysdahlgaard S. Utilizing heat maps as explainable artificial intelligence for detecting abnormalities on wrist and elbow radiographs.
                   Radiography 2023;29:1132-8.  DOI  PubMed
               31.      Alammar Z, Alzubaidi L, Zhang J, Li Y, Lafta W, Gu Y. Deep transfer learning with enhanced feature fusion for detection of
                   abnormalities in X-ray images. Cancers 2023;15:4007.  DOI  PubMed  PMC
               32.      Jacques T, Cardot N, Ventre J, Demondion X, Cotten A. Commercially-available AI algorithm improves radiologists’ sensitivity for
                   wrist and hand fracture detection on X-ray, compared to a CT-based ground truth. Eur Radiol 2024;34:2885-94.  DOI  PubMed
               33.      Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin
                   Radiol 2018;73:439-45.  DOI  PubMed
               34.      Gan K, Xu D, Lin Y, et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural
                   network and professional assessments. Acta Orthop 2019;90:394-400.  DOI  PubMed  PMC
               35.      Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT. Convolutional neural networks for automated fracture detection and
                   localization on wrist radiographs. Radiol Artif Intell 2019;1:e180001.  DOI  PubMed  PMC
               36.      Oka K, Shiode R, Yoshii Y, Tanaka H, Iwahashi T, Murase T. Artificial intelligence to diagnosis distal radius fracture using biplane
                   plain X-rays. J Orthop Surg Res 2021;16:694.  DOI  PubMed  PMC
               37.      Russe MF, Rebmann P, Tran PH, et al. AI-based X-ray fracture analysis of the distal radius: accuracy between representative
                   classification, detection and segmentation deep learning models for clinical practice. BMJ Open 2024;14:e076954.  DOI  PubMed
                   PMC
               38.      Zhang J, Li Z, Lin H, et al. Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures. Front
                   Med 2023;10:1224489.  DOI  PubMed  PMC
   20   21   22   23   24   25   26   27   28   29   30