Page 15 - Read Online
P. 15

Page 221                                                                                                                                                    Dababneh et al. Art Int Surg 2024;4:214-32  https://dx.doi.org/10.20517/ais.2024.50



 Table 2. Compilation of published articles focusing on automated fracture detection in the hand or wrist using ML models

 Study  Fracture site  Dataset size (view)  ML model used  AUC  Sensitivity            Specificity
 Olczak et al.  Wrist or hand or ankle  256,000  Multiple DL networks (BVLC Reference CaffeNet network,  0.83  -  -
 [25]
 (2017)  VGG CNN S network, VGG CNN, Network-in-network)
 Lee et al.   Distal radius, ulnar styloid or scaphoid  5,618 (AP, lat, and oblique) e-CRF, self-developed AI model  Distal radius:   Distal radius: 0.97   Distal radius: 0.83
 [26]
 (2023)                                  0.903             Ulnar styloid:0.98   Ulnar styloid:0.87
                                         Ulnar styloid:    Scaphoid: 0.87    Scaphoid: 0.74
                                         0.925
                                         Scaphoid: 0.808
 Lindsey et al.   Wrist  34,990 (PA, lat)  Self-developed deep neural network  0.954  0.94  0.95
 [27]
 (2018)
 Cohen et al.   Distal radius or ulnar styloid or distal ulna   1,917 (AP, lat, oblique,   BoneView (Gleamer) DCNN algorithm  -  0.83  0.96
 [28]
 (2023)  or metacarpal or scaphoid or carpal bone  specific views of the
 carpus)
 Hardalac et al.  Distal radius or distal ulna  542  WFD-C, deep-learning-based object detection model  0.864  -  -
 [29]
 (2022)
 Alammar et al.   Humerus or wrist  10,558  TL adaption of ImageNet models  Humerus: 0.879   Humerus: 0.87   Humerus: 0.87
 [31]
 (2023)                                  Wrist: 0.856      Wrist: 0.89       Wrist: 0.93
 Jacques et al.   Distal radius or distal ulna or carpal bones  788  BoneView (Gleamer)  0.764  0.70  0.89
 [32]
 (2024)  or scaphoid or finger
 Kim and   Distal radius or distal ulna  1,489 (lat)  Inception v3 network, DCNNs  0.954  0.90  0.88
 MacKinnon
 [33]
 (2018)
 Gan et al.   Distal radius  2340 wrist (AP)  Inception-v4  0.96  0.90       0.96
 [34]
 (2019)
 Oka et al.   Distal radius, styloid process of ulna  1,464 (AP, lat)  VGG16  Distal radius: 0.99  Distal radius: 0.99  Distal radius: 0.97
 [36]
 (2021)                                  Ulna: 0.96        Ulna: 0.92        Ulna: 0.90
 Russe et al.   Distal radius  2,856 (AP, lat)  Xception  0.97  0.95         0.95
 [37]
 (2024)
 Zhang et al.   Distal radius  6,536 (AP, lat)  Ensemble model of RetinaNet, Faster RCNN and Cascade  0.97  0.96  0.98
 [38]
 (2023)  RCNN
 Anttila et al.   Distal radius  3,785 (PA, lat)  Self-developed DL algorithm developed as standalone   0.95  0.86  0.89
 [39]
 (2023)  MATLAB application
 Mert et al.   Distal radius  150 (AP, lat)  ChatGPT 4  0.93  0.88           0.98
 [40]
 (2024)
 Ozkaya et al.   Scaphoid  390 (AP)  Pre-trained ResNet50 network  0.84  0.76  0.92
 [41]
 (2022)
 Hendrix et al.   Scaphoid  4,229 (AP, PA)  Self-developed fracture detection and segmentation CNN  0.87  0.78  0.84
 [42]
 (2021)
 Hendrix et al.   Scaphoid  19,111 (AP, PA, ulnar-  Self-developed fracture detection and segmentation CNN  0.88  0.72  0.93
 [43]
 (2023)  deviated and oblique)
   10   11   12   13   14   15   16   17   18   19   20