Page 97 - Read Online
P. 97

Page 14                           Glaser et al. Art Int Surg. 2025;5:1-15  https://dx.doi.org/10.20517/ais.2024.36

                   review. Global Spine J. 2022;12:1561-72.  DOI  PubMed  PMC
               16.      Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J
                   Surg. 2021;88:105906.  DOI  PubMed
               17.      Cabitza F, Campagner A. The IJMEDI checklist for assessment of medical AI. Int J Med Inform. 2021;153.  DOI
               18.      Chae DS, Nguyen TP, Park SJ, Kang KY, Won C, Yoon J. Decentralized convolutional neural network for evaluating spinal deformity
                   with spinopelvic parameters. Comput Methods Programs Biomed. 2020;197:105699.  DOI  PubMed
               19.      Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med
                   Image Anal. 2018;48:1-11.  DOI  PubMed
               20.      Wang L, Xu Q, Leung S, Chung J, Chen B, Li S. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med
                   Image Anal. 2019;58:101542.  DOI
               21.      Zhang K, Xu N, Guo C, Wu J. MPF-net: an effective framework for automated cobb angle estimation.  Med Image Anal.
                   2022;75:102277.  DOI
               22.      Zerouali M, Parpaleix A, Benbakoura M, Rigault C, Champsaur P, Guenoun D. Automatic deep learning-based assessment of
                   spinopelvic coronal and sagittal alignment. Diagn Interv Imaging. 2023;104:343-50.  DOI  PubMed
               23.      Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray
                   images: performance evaluation. Eur Spine J. 2020;29:2295-305.  DOI  PubMed
               24.      Kim YT, Jeong TS, Kim YJ, Kim WS, Kim KG, Yee GT. Automatic spine segmentation and parameter measurement for radiological
                   analysis of whole-spine lateral radiographs using deep learning and computer vision. J Digit Imaging. 2023;36:1447-59.  DOI
                   PubMed  PMC
               25.      Yeh YC, Weng CH, Huang YJ, Fu CJ, Tsai TT, Yeh CY. Deep learning approach for automatic landmark detection and alignment
                   analysis in whole-spine lateral radiographs. Sci Rep. 2021;11:7618.  DOI  PubMed  PMC
               26.      Orosz LD, Bhatt FR, Jazini E, et al. Novel artificial intelligence algorithm: an accurate and independent measure of spinopelvic
                   parameters. J Neurosurg Spine. 2022;37:893-901.  DOI
               27.      Gami P, Qiu K, Kannappan S, et al. Semiautomated intraoperative measurement of Cobb angle and coronal C7 plumb line using deep
                   learning and computer vision for scoliosis correction: a feasibility study. J Neurosurg Spine. 2022;37:713-21.  DOI
               28.      Schwartz JT, Cho BH, Tang P, et al. Deep learning automates measurement of spinopelvic parameters on lateral lumbar radiographs.
                   Spine. 2021;46:E671-8.  DOI
               29.      Aubert B, Vazquez C, Cresson T, Parent S, de Guise JA. Toward automated 3D spine reconstruction from biplanar radiographs using
                   CNN for statistical spine model fitting. IEEE Trans Med Imaging. 2019;38:2796-806.  DOI  PubMed
               30.      Nguyen TP, Jung JW, Yoo YJ, Choi SH, Yoon J. Intelligent evaluation of global spinal alignment by a decentralized convolutional
                   neural network. J Digit Imaging. 2022;35:213-25.  DOI  PubMed  PMC
               31.      Galbusera F, Niemeyer F, Wilke HJ, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning
                   approach. Eur Spine J. 2019;28:951-60.  DOI
               32.      Zhang T, Zhu C, Lu Q, Liu J, Diwan A, Cheung JPY. A novel tool to provide predictable alignment data irrespective of source and
                   image quality acquired on mobile phones: what engineers can offer clinicians. Eur Spine J. 2020;29:387-95.  DOI  PubMed
               33.      Horng MH, Kuok CP, Fu MJ, Lin CJ, Sun YN. Cobb angle measurement of spine from X-ray images using convolutional neural
                   network. Comput Math Methods Med. 2019;2019:6357171.  DOI  PubMed  PMC
               34.      Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal Cobb angles by structured multi-output regression.
                   In: Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P, Shen D, editors. Information processing in medical imaging. Cham:
                   Springer International Publishing; 2017. pp. 529-40.  DOI
               35.      Weng CH, Wang CL, Huang YJ, et al. Artificial intelligence for automatic measurement of sagittal vertical axis using ResUNet
                   framework. J Clin Med. 2019;8:1826.  DOI  PubMed  PMC
               36.      H A, Prabhu GK. Automatic quantification of spinal curvature in scoliotic radiograph using image processing. J Med Syst.
                   2012;36:1943-51.  DOI  PubMed
               37.      Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y. Automatic Cobb measurement of scoliosis based on fuzzy Hough Transform with
                   vertebral shape prior. J Digit Imaging. 2009;22:463-72.  DOI  PubMed  PMC
               38.      Sounderajah V, Ashrafian H, Golub RM, et al; STARD-AI Steering Committee. Developing a reporting guideline for artificial
                   intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709.  DOI  PubMed  PMC
               39.      Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for
                   clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health. 2020;2:e537-
                   48.  DOI  PubMed  PMC
               40.      Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers.
                   Radiol Artif Intell. 2020;2:e200029.  DOI  PubMed  PMC
               41.      Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical imaging data for machine learning. Radiology. 2020;295:4-15.  DOI
                   PubMed  PMC
               42.      Ghaednia H, Lans A, Sauder N, et al. Deep learning in spine surgery. Semin Spine Surg. 2021;33:100876.  DOI
               43.      Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial
                   intelligence. BMC Med. 2019;17:195.  DOI  PubMed  PMC
               44.      Cho BH, Kaji D, Cheung ZB, et al. Automated measurement of lumbar lordosis on radiographs using machine learning and computer
   92   93   94   95   96   97   98   99   100   101   102