Page 97 - Read Online
P. 97
Page 14 Glaser et al. Art Int Surg. 2025;5:1-15 https://dx.doi.org/10.20517/ais.2024.36
review. Global Spine J. 2022;12:1561-72. DOI PubMed PMC
16. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J
Surg. 2021;88:105906. DOI PubMed
17. Cabitza F, Campagner A. The IJMEDI checklist for assessment of medical AI. Int J Med Inform. 2021;153. DOI
18. Chae DS, Nguyen TP, Park SJ, Kang KY, Won C, Yoon J. Decentralized convolutional neural network for evaluating spinal deformity
with spinopelvic parameters. Comput Methods Programs Biomed. 2020;197:105699. DOI PubMed
19. Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med
Image Anal. 2018;48:1-11. DOI PubMed
20. Wang L, Xu Q, Leung S, Chung J, Chen B, Li S. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med
Image Anal. 2019;58:101542. DOI
21. Zhang K, Xu N, Guo C, Wu J. MPF-net: an effective framework for automated cobb angle estimation. Med Image Anal.
2022;75:102277. DOI
22. Zerouali M, Parpaleix A, Benbakoura M, Rigault C, Champsaur P, Guenoun D. Automatic deep learning-based assessment of
spinopelvic coronal and sagittal alignment. Diagn Interv Imaging. 2023;104:343-50. DOI PubMed
23. Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray
images: performance evaluation. Eur Spine J. 2020;29:2295-305. DOI PubMed
24. Kim YT, Jeong TS, Kim YJ, Kim WS, Kim KG, Yee GT. Automatic spine segmentation and parameter measurement for radiological
analysis of whole-spine lateral radiographs using deep learning and computer vision. J Digit Imaging. 2023;36:1447-59. DOI
PubMed PMC
25. Yeh YC, Weng CH, Huang YJ, Fu CJ, Tsai TT, Yeh CY. Deep learning approach for automatic landmark detection and alignment
analysis in whole-spine lateral radiographs. Sci Rep. 2021;11:7618. DOI PubMed PMC
26. Orosz LD, Bhatt FR, Jazini E, et al. Novel artificial intelligence algorithm: an accurate and independent measure of spinopelvic
parameters. J Neurosurg Spine. 2022;37:893-901. DOI
27. Gami P, Qiu K, Kannappan S, et al. Semiautomated intraoperative measurement of Cobb angle and coronal C7 plumb line using deep
learning and computer vision for scoliosis correction: a feasibility study. J Neurosurg Spine. 2022;37:713-21. DOI
28. Schwartz JT, Cho BH, Tang P, et al. Deep learning automates measurement of spinopelvic parameters on lateral lumbar radiographs.
Spine. 2021;46:E671-8. DOI
29. Aubert B, Vazquez C, Cresson T, Parent S, de Guise JA. Toward automated 3D spine reconstruction from biplanar radiographs using
CNN for statistical spine model fitting. IEEE Trans Med Imaging. 2019;38:2796-806. DOI PubMed
30. Nguyen TP, Jung JW, Yoo YJ, Choi SH, Yoon J. Intelligent evaluation of global spinal alignment by a decentralized convolutional
neural network. J Digit Imaging. 2022;35:213-25. DOI PubMed PMC
31. Galbusera F, Niemeyer F, Wilke HJ, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning
approach. Eur Spine J. 2019;28:951-60. DOI
32. Zhang T, Zhu C, Lu Q, Liu J, Diwan A, Cheung JPY. A novel tool to provide predictable alignment data irrespective of source and
image quality acquired on mobile phones: what engineers can offer clinicians. Eur Spine J. 2020;29:387-95. DOI PubMed
33. Horng MH, Kuok CP, Fu MJ, Lin CJ, Sun YN. Cobb angle measurement of spine from X-ray images using convolutional neural
network. Comput Math Methods Med. 2019;2019:6357171. DOI PubMed PMC
34. Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal Cobb angles by structured multi-output regression.
In: Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P, Shen D, editors. Information processing in medical imaging. Cham:
Springer International Publishing; 2017. pp. 529-40. DOI
35. Weng CH, Wang CL, Huang YJ, et al. Artificial intelligence for automatic measurement of sagittal vertical axis using ResUNet
framework. J Clin Med. 2019;8:1826. DOI PubMed PMC
36. H A, Prabhu GK. Automatic quantification of spinal curvature in scoliotic radiograph using image processing. J Med Syst.
2012;36:1943-51. DOI PubMed
37. Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y. Automatic Cobb measurement of scoliosis based on fuzzy Hough Transform with
vertebral shape prior. J Digit Imaging. 2009;22:463-72. DOI PubMed PMC
38. Sounderajah V, Ashrafian H, Golub RM, et al; STARD-AI Steering Committee. Developing a reporting guideline for artificial
intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709. DOI PubMed PMC
39. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for
clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health. 2020;2:e537-
48. DOI PubMed PMC
40. Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers.
Radiol Artif Intell. 2020;2:e200029. DOI PubMed PMC
41. Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical imaging data for machine learning. Radiology. 2020;295:4-15. DOI
PubMed PMC
42. Ghaednia H, Lans A, Sauder N, et al. Deep learning in spine surgery. Semin Spine Surg. 2021;33:100876. DOI
43. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial
intelligence. BMC Med. 2019;17:195. DOI PubMed PMC
44. Cho BH, Kaji D, Cheung ZB, et al. Automated measurement of lumbar lordosis on radiographs using machine learning and computer