Page 96 - Read Online
P. 96

Glaser et al. Art Int Surg. 2025;5:1-15  https://dx.doi.org/10.20517/ais.2024.36     Page 13

               DECLARATIONS
               Authors’ contributions
               Manuscript writing and revision: Glaser D
               Data collection, analysis, and manuscript revision: AlMekkawi AK, Caruso JP
               Data contribution and manuscript revision: Chung CY, Khan EZ, Daadaa HM
               Conceptualization, progress monitoring, and final manuscript revision: Aoun SG, Bagley CA


               Availability of data and materials
               The data are available from the corresponding author upon reasonable request.


               Financial support and sponsorship
               None.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2025.

               REFERENCES
               1.       Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28:1889-905.  DOI
                   PubMed
               2.       Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernuš F. A review of methods for evaluating the quantitative
                   parameters of sagittal pelvic alignment. Spine J. 2012;12:433-46.  DOI  PubMed
               3.       Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation
                   of spinal sagittal curves. Eur Spine J. 1998;7:99-103.  DOI  PubMed  PMC
               4.       Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal
                   deformity. Spine. 2005;30:2024-9.  DOI  PubMed
               5.       Maillot C, Ferrero E, Fort D, Heyberger C, Le Huec JC. Reproducibility and repeatability of a new computerized software for sagittal
                   spinopelvic and scoliosis curvature radiologic measurements: Keops®. Eur Spine J. 2015;24:1574-81.  DOI  PubMed
               6.       Lafage R, Ferrero E, Henry JK, et al. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J.
                   2015;15:2493-502.  DOI  PubMed
               7.       Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.  DOI
               8.       Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-48.  DOI  PubMed  PMC
               9.       Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR Spine. 2019;2:e1044.  DOI
                   PubMed  PMC
               10.      LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-44.  DOI  PubMed
               11.      Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29:102-27.
                   DOI  PubMed
               12.      Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from
                   medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1:e271-97.  DOI
               13.      Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol.
                   2020;49:183-97.  DOI  PubMed
               14.      Jamaludin A, Lootus M, Kadir T, et al; Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of
                   reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is
                   comparable with an expert radiologist. Eur Spine J. 2017;26:1374-83.  DOI
               15.      Lopez CD, Boddapati V, Lombardi JM, et al. Artificial learning and machine learning applications in spine surgery: a systematic
   91   92   93   94   95   96   97   98   99   100   101