Page 106 - Read Online
P. 106

Page 23                                                          Martinez et al. Art Int Surg. 2025;5:16-23  https://dx.doi.org/10.20517/ais.2024.73

                   2021;89:116-21.  DOI  PubMed  PMC
               28.      Broida SE, Schrum ML, Yoon E, et al. Improving surgical triage in spine clinic: predicting likelihood of surgery using machine
                   learning. World Neurosurg. 2022;163:e192-8.  DOI
               29.      Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014;12:573-
                   6.  DOI  PubMed  PMC
               30.      Zhuo Z, Zhang J, Duan Y, et al. Automated classification of intramedullary spinal cord tumors and inflammatory demyelinating
                   lesions using deep learning. Radiol Artif Intell. 2022;4:e210292.  DOI
               31.      Liu H, Jiao M, Yuan Y, et al. Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework
                   on MRI. Insights Imaging. 2022;13:87.  DOI  PubMed  PMC
               32.      Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin.
                   2019;69:127-57.  DOI  PubMed  PMC
               33.      Wang J, Fang Z, Lang N, Yuan H, Su MY, Baldi P. A multi-resolution approach for spinal metastasis detection using deep Siamese
                   neural networks. Comput Biol Med. 2017;84:137-46.  DOI  PubMed  PMC
               34.      Cui Y, Zhu J, Duan Z, Liao Z, Wang S, Liu W. Artificial intelligence in spinal imaging: current status and future directions. Int J
                   Environ Res Public Health. 2022;19:11708.  DOI  PubMed  PMC
               35.      Singh GD, Singh M. Virtual surgical planning: modeling from the present to the future. J Clin Med. 2021;10:5655.  DOI  PubMed
                   PMC
               36.      Chen Z, Mo S, Fan X, You Y, Ye G, Zhou N. A meta-analysis and systematic review comparing the effectiveness of traditional and
                   virtual surgical planning for orthognathic surgery: based on randomized clinical trials. J Oral Maxillofac Surg. 2021;79:471.e1-19.
                   DOI
               37.      Mangano FG, Admakin O, Lerner H, Mangano C. Artificial intelligence and augmented reality for guided implant surgery planning: a
                   proof of concept. J Dent. 2023;133:104485.  DOI  PubMed
               38.      Marcus AP, Marcus HJ, Camp SJ, Nandi D, Kitchen N, Thorne L. Improved prediction of surgical resectability in patients with
                   glioblastoma using an artificial neural network. Sci Rep. 2020;10:5143.  DOI  PubMed  PMC
               39.      Atai NA, Mehta VA. Initial United States experience with Medtronic Stealth Autoguide cranial robotic guidance platform. J
                   Neurosurg. 2024;141:1520-6.  DOI  PubMed
               40.      Medtronic. Available from: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/surgical-navigation-
                   systems/stealthstation.html. [Last accessed on 30 Dec 2024].
               41.      Allina Health. Navigation systems. Available from: https://www.allinahealth.org/united-hospital/services/john-nasseff-neuroscience-
                   institute/technology/navigation-systems. [Last accessed on 30 Dec 2024].
               42.      Silva AK, Preminger A, Slezak S, Phillips LG, Johnson DJ. Melting the plastic ceiling: overcoming obstacles to foster leadership in
                   women plastic surgeons. Plast Reconstr Surg. 2016;138:721-9.  DOI
               43.      Sharma  JD,  Seunarine  KK,  Tahir  MZ,  Tisdall  MM.  Accuracy  of  robot-assisted  versus  optical  frameless  navigated
                   stereoelectroencephalography electrode placement in children. J Neurosurg Pediatr. 2019;23:297-302.  DOI
               44.      Fan X, Mirza SK, Li C, Evans LT, Ji S, Paulsen KD. Accuracy of stereovision-updated versus preoperative CT-based image guidance
                   in multilevel lumbar pedicle screw placement: a cadaveric swine study. JB JS Open Access. 2022;7:e21.00129.  DOI  PubMed  PMC
               45.      Chen H. Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J Orthop Surg Res.
                   2023;18:775.  DOI  PubMed  PMC
               46.      Xiong J, Hsiang EL, He Z, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future
                   perspectives. Light Sci Appl. 2021;10:216.  DOI  PubMed  PMC
               47.      Gao Y, Zhao Y, Xie L, Zheng G. A projector-based augmented reality navigation system for computer-assisted surgery. Sensors.
                   2021;21:2931.  DOI  PubMed  PMC
               48.      Longo UG, De Salvatore S, Candela V, et al. Augmented reality, virtual reality and artificial intelligence in orthopedic surgery: a
                   systematic review. Appl Sci. 2021;11:3253.  DOI
               49.      Ghaednia H, Fourman MS, Lans A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials.
                   Spine J. 2021;21:1617-25.  DOI
               50.      Kosterhon M, Gutenberg A, Kantelhardt SR, Archavlis E, Giese A. Navigation and image injection for control of bone removal and
                   osteotomy planes in spine surgery. Oper Neurosurg. 2017;13:297-304.  DOI  PubMed
               51.      Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle
                   screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12:2205-15.  DOI
               52.      Morris MX, Fiocco D, Caneva T, Yiapanis P, Orgill DP. Current and future applications of artificial intelligence in surgery:
                   implications for clinical practice and research. Front Surg. 2024;11:1393898.  DOI  PubMed  PMC
               53.      Morley J, Murphy L, Mishra A, Joshi I, Karpathakis K. Governing data and artificial intelligence for health care: developing an
                   international understanding. JMIR Form Res. 2022;6:e31623.  DOI  PubMed  PMC
               54.      Samant S. What role will AI play in resource-poor health care settings? 2019. Available from: https://www.clinicallab.com/what-role-
                   will-ai-play-in-resource-poor-health-care-settings-407. [Last accessed on 30 Dec 2024].
               55.      Mithany RH, Aslam S, Abdallah S, et al. Advancements and challenges in the application of artificial intelligence in surgical arena: a
                   literature review. Cureus. 2023;15:e47924.  DOI  PubMed  PMC
               56.      Amin A, Cardoso SA, Suyambu J, et al. Future of artificial intelligence in surgery: a narrative review. Cureus. 2024;16:e51631.  DOI
                   PubMed  PMC
   101   102   103   104   105   106   107   108   109   110   111