Page 106 - Read Online
P. 106
Page 23 Martinez et al. Art Int Surg. 2025;5:16-23 https://dx.doi.org/10.20517/ais.2024.73
2021;89:116-21. DOI PubMed PMC
28. Broida SE, Schrum ML, Yoon E, et al. Improving surgical triage in spine clinic: predicting likelihood of surgery using machine
learning. World Neurosurg. 2022;163:e192-8. DOI
29. Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014;12:573-
6. DOI PubMed PMC
30. Zhuo Z, Zhang J, Duan Y, et al. Automated classification of intramedullary spinal cord tumors and inflammatory demyelinating
lesions using deep learning. Radiol Artif Intell. 2022;4:e210292. DOI
31. Liu H, Jiao M, Yuan Y, et al. Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework
on MRI. Insights Imaging. 2022;13:87. DOI PubMed PMC
32. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin.
2019;69:127-57. DOI PubMed PMC
33. Wang J, Fang Z, Lang N, Yuan H, Su MY, Baldi P. A multi-resolution approach for spinal metastasis detection using deep Siamese
neural networks. Comput Biol Med. 2017;84:137-46. DOI PubMed PMC
34. Cui Y, Zhu J, Duan Z, Liao Z, Wang S, Liu W. Artificial intelligence in spinal imaging: current status and future directions. Int J
Environ Res Public Health. 2022;19:11708. DOI PubMed PMC
35. Singh GD, Singh M. Virtual surgical planning: modeling from the present to the future. J Clin Med. 2021;10:5655. DOI PubMed
PMC
36. Chen Z, Mo S, Fan X, You Y, Ye G, Zhou N. A meta-analysis and systematic review comparing the effectiveness of traditional and
virtual surgical planning for orthognathic surgery: based on randomized clinical trials. J Oral Maxillofac Surg. 2021;79:471.e1-19.
DOI
37. Mangano FG, Admakin O, Lerner H, Mangano C. Artificial intelligence and augmented reality for guided implant surgery planning: a
proof of concept. J Dent. 2023;133:104485. DOI PubMed
38. Marcus AP, Marcus HJ, Camp SJ, Nandi D, Kitchen N, Thorne L. Improved prediction of surgical resectability in patients with
glioblastoma using an artificial neural network. Sci Rep. 2020;10:5143. DOI PubMed PMC
39. Atai NA, Mehta VA. Initial United States experience with Medtronic Stealth Autoguide cranial robotic guidance platform. J
Neurosurg. 2024;141:1520-6. DOI PubMed
40. Medtronic. Available from: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/surgical-navigation-
systems/stealthstation.html. [Last accessed on 30 Dec 2024].
41. Allina Health. Navigation systems. Available from: https://www.allinahealth.org/united-hospital/services/john-nasseff-neuroscience-
institute/technology/navigation-systems. [Last accessed on 30 Dec 2024].
42. Silva AK, Preminger A, Slezak S, Phillips LG, Johnson DJ. Melting the plastic ceiling: overcoming obstacles to foster leadership in
women plastic surgeons. Plast Reconstr Surg. 2016;138:721-9. DOI
43. Sharma JD, Seunarine KK, Tahir MZ, Tisdall MM. Accuracy of robot-assisted versus optical frameless navigated
stereoelectroencephalography electrode placement in children. J Neurosurg Pediatr. 2019;23:297-302. DOI
44. Fan X, Mirza SK, Li C, Evans LT, Ji S, Paulsen KD. Accuracy of stereovision-updated versus preoperative CT-based image guidance
in multilevel lumbar pedicle screw placement: a cadaveric swine study. JB JS Open Access. 2022;7:e21.00129. DOI PubMed PMC
45. Chen H. Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J Orthop Surg Res.
2023;18:775. DOI PubMed PMC
46. Xiong J, Hsiang EL, He Z, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future
perspectives. Light Sci Appl. 2021;10:216. DOI PubMed PMC
47. Gao Y, Zhao Y, Xie L, Zheng G. A projector-based augmented reality navigation system for computer-assisted surgery. Sensors.
2021;21:2931. DOI PubMed PMC
48. Longo UG, De Salvatore S, Candela V, et al. Augmented reality, virtual reality and artificial intelligence in orthopedic surgery: a
systematic review. Appl Sci. 2021;11:3253. DOI
49. Ghaednia H, Fourman MS, Lans A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials.
Spine J. 2021;21:1617-25. DOI
50. Kosterhon M, Gutenberg A, Kantelhardt SR, Archavlis E, Giese A. Navigation and image injection for control of bone removal and
osteotomy planes in spine surgery. Oper Neurosurg. 2017;13:297-304. DOI PubMed
51. Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle
screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12:2205-15. DOI
52. Morris MX, Fiocco D, Caneva T, Yiapanis P, Orgill DP. Current and future applications of artificial intelligence in surgery:
implications for clinical practice and research. Front Surg. 2024;11:1393898. DOI PubMed PMC
53. Morley J, Murphy L, Mishra A, Joshi I, Karpathakis K. Governing data and artificial intelligence for health care: developing an
international understanding. JMIR Form Res. 2022;6:e31623. DOI PubMed PMC
54. Samant S. What role will AI play in resource-poor health care settings? 2019. Available from: https://www.clinicallab.com/what-role-
will-ai-play-in-resource-poor-health-care-settings-407. [Last accessed on 30 Dec 2024].
55. Mithany RH, Aslam S, Abdallah S, et al. Advancements and challenges in the application of artificial intelligence in surgical arena: a
literature review. Cureus. 2023;15:e47924. DOI PubMed PMC
56. Amin A, Cardoso SA, Suyambu J, et al. Future of artificial intelligence in surgery: a narrative review. Cureus. 2024;16:e51631. DOI
PubMed PMC