Page 105 - Read Online
P. 105
Martinez et al. Art Int Surg. 2025;5:16-23 https://dx.doi.org/10.20517/ais.2024.73 Page 22
Copyright
© The Author(s) 2025.
REFERENCES
1. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial intelligence in surgery: the future is now. Eur Surg Res. 2024;65:22-
39. DOI
2. Malhotra K, Wong BNX, Lee S, et al. Role of artificial intelligence in global surgery: a review of opportunities and challenges.
Cureus. 2023;15:e43192. DOI PubMed PMC
3. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268:70-6.
DOI PubMed PMC
4. Reece EM, Davis MJ, Wagner RD, et al. Vascularized bone grafts for spinal fusion-part 1: the iliac crest. Oper Neurosurg.
2021;20:493-6. DOI
5. Reece EM, Agrawal N, Wagner KM, et al. Vascularized bone grafts for spinal fusion-part 2: the rib. Oper Neurosurg. 2021;20:497-
501. DOI
6. Bohl MA, Reece EM, Farrokhi F, Davis MJ, Abu-Ghname A, Ropper AE. Vascularized bone grafts for spinal fusion-part 3: the
occiput. Oper Neurosurg. 2021;20:502-7. DOI PubMed
7. Reece EM, Davis MJ, Abu-Ghname A, et al. Vascularized bone grafts for spinal fusion-part 4: the scapula. Oper Neurosurg.
2021;20:508-12. DOI
8. Bohl MA, Almefty KK, Preul MC, et al. Vascularized spinous process graft rotated on a paraspinous muscle pedicle for lumbar fusion:
technique description and early clinical experience. World Neurosurg. 2018;115:186-92. DOI
9. Abdulwadood I, Gomez DA, Martinez C, et al. Vascularized bone grafts in spinal reconstruction: an updated comprehensive review.
Orthop Surg. 2024;17:7-14. DOI
10. Skochdopole AJ, Wagner RD, Davis MJ, et al. Vascularized bone grafts in spinal reconstruction: an overview of nomenclature and
indications. Semin Plast Surg. 2021;35:50-3. DOI PubMed PMC
11. Pennington Z, Mehta VA, Lubelski D, et al. Quality of life and cost implications of pseudarthrosis after anterior cervical discectomy
and fusion and its subsequent revision surgery. World Neurosurg. 2020;133:e592-9. DOI
12. McAnany SJ, Baird EO, Overley SC, Kim JS, Qureshi SA, Anderson PA. A meta-analysis of the clinical and fusion results following
treatment of symptomatic cervical pseudarthrosis. Global Spine J. 2015;5:148-55. DOI PubMed PMC
13. Verla T, Xu DS, Davis MJ, et al. Failure in cervical spinal fusion and current management modalities. Semin Plast Surg. 2021;35:10-3.
DOI PubMed PMC
14. Buchem MM, Boosman H, Bauer MP, Kant IMJ, Cammel SA, Steyerberg EW. The digital scribe in clinical practice: a scoping review
and research agenda. NPJ Digit Med. 2021;4:57. DOI PubMed PMC
15. Park D, Cho JM, Yang JW, et al. Classification of expert-level therapeutic decisions for degenerative cervical myelopathy using
ensemble machine learning algorithms. Front Surg. 2022;9:1010420. DOI PubMed PMC
16. Zhou C, Huang S, Liang T, et al. Machine learning-based clustering in cervical spondylotic myelopathy patients to identify
heterogeneous clinical characteristics. Front Surg. 2022;9:935656. DOI PubMed PMC
17. Mekhael E, El Rachkidi R, Saliby RM, et al. Functional assessment using 3D movement analysis can better predict health-related
quality of life outcomes in patients with adult spinal deformity: a machine learning approach. Front Surg. 2023;10:1166734. DOI
PubMed PMC
18. Hornung AL, Hornung CM, Mallow GM, et al. Artificial intelligence in spine care: current applications and future utility. Eur Spine J.
2022;31:2057-81. DOI
19. Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Artificial intelligence based
hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification
scheme that predicts quality and value. Spine. 2019;44:915-26. DOI
20. Shah AA, Devana SK, Lee C, et al. Machine learning-driven identification of novel patient factors for prediction of major
complications after posterior cervical spinal fusion. Eur Spine J. 2022;31:1952-9. DOI PubMed PMC
21. Hassan AM, Rajesh A, Asaad M, et al. Artificial intelligence and machine learning in prediction of surgical complications: current
state, applications, and implications. Am Surg. 2023;89:25-30. DOI PubMed PMC
22. Martin BI, Bono CM. Artificial intelligence and spine: rise of the machines. Spine J. 2021;21:1604-5. DOI PubMed
23. Katsos K, Johnson SE, Ibrahim S, Bydon M. Current applications of machine learning for spinal cord tumors. Life. 2023;13:520. DOI
PubMed PMC
24. DiSilvestro KJ, Veeramani A, McDonald CL, et al. Predicting postoperative mortality after metastatic intraspinal neoplasm excision:
development of a machine-learning approach. World Neurosurg. 2021;146:e917-24. DOI
25. Benzakour A, Altsitzioglou P, Lemée JM, Ahmad A, Mavrogenis AF, Benzakour T. Artificial intelligence in spine surgery. Int Orthop.
2023;47:457-65. DOI PubMed
26. Browd SR, Park C, Donoho DA. Potential applications of artificial intelligence and machine learning in spine surgery across the
continuum of care. Int J Spine Surg. 2023;17:S26-33. DOI PubMed PMC
27. Wilson B, Gaonkar B, Yoo B, et al. Predicting spinal surgery candidacy from imaging data using machine learning. Neurosurgery.