Page 174 - Read Online
P. 174
Endo et al. Art Int Surg 2024;4:59-67 https://dx.doi.org/10.20517/ais.2024.09 Page 67
slides. Hepatology 2020;72:2000-13. DOI PubMed
44. Endo Y, Alaimo L, Lima HA, et al. A novel online calculator to predict risk of microvascular invasion in the preoperative setting for
hepatocellular carcinoma patients undergoing curative-intent surgery. Ann Surg Oncol 2023;30:725-33. DOI PubMed
45. Yao S, Ye Z, Wei Y, Jiang HY, Song B. Radiomics in hepatocellular carcinoma: a state-of-the-art review. World J Gastrointest Oncol
2021;13:1599-615. DOI PubMed PMC
46. Lewis S, Hectors S, Taouli B. Radiomics of hepatocellular carcinoma. Abdom Radiol 2021;46:111-23. DOI PubMed
47. Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using
contrast-enhanced CT. Eur Radiol 2019;29:3595-605. DOI PubMed
48. Zhu YJ, Feng B, Wang S, et al. Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a
potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Oncol Lett 2019;18:720-32. DOI
PubMed PMC
49. Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and
deep learning. J Cancer Res Clin Oncol 2021;147:821-33. DOI PubMed PMC
50. American Cancer Society. Key statistics for bile duct cancer. Available from: https://www.cancer.org/cancer/types//bile-duct-cancer/
about/key-statistics.html. [Last accessed on 24 May 2024].
51. Alaimo L, Lima HA, Moazzam Z, et al. Development and validation of a machine-learning model to predict early recurrence of
intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:5406-15. DOI PubMed
52. Sasaki K, Morioka D, Conci S, et al. The tumor burden score: a new “metro-ticket” prognostic tool for colorectal liver metastases
based on tumor size and number of tumors. Ann Surg 2018;267:132-41. DOI PubMed
53. Cotter G, Beal EW, Poultsides GA, et al. Using machine learning to preoperatively stratify prognosis among patients with gallbladder
cancer: a multi-institutional analysis. HPB 2022;24:1980-8. DOI PubMed
54. Tsilimigras DI, Hyer JM, Paredes AZ, et al. A novel classification of intrahepatic cholangiocarcinoma phenotypes using machine
learning techniques: an international multi-institutional analysis. Ann Surg Oncol 2020;27:5224-32. DOI PubMed
55. Chen B, Mao Y, Li J, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using
machine learning radiomics based on CECT: a multi-institutional study. Comput Biol Med 2023;167:107612. DOI PubMed
56. Endo Y, Moazzam Z, Lima HA, et al. The impact of tumor location on the value of lymphadenectomy for intrahepatic
cholangiocarcinoma. HPB 2023;25:650-8. DOI PubMed
57. Mueller M, Breuer E, Mizuno T, et al. Perihilar cholangiocarcinoma - novel benchmark values for surgical and oncological outcomes
from 24 expert centers. Ann Surg 2021;274:780-8. DOI PubMed
58. van Keulen AM, Buettner S, Erdmann JI, et al; perihilar cholangiocarcinoma collaboration group. Multivariable prediction model for
both 90-day mortality and long-term survival for individual patients with perihilar cholangiocarcinoma: does the predicted survival
justify the surgical risk? Br J Surg 2023;110:599-605. DOI PubMed PMC
59. Ratti F, Marino R, Olthof PB, et al; Perihilar Cholangiocarcinoma Collaboration Group. Predicting futility of upfront surgery in
perihilar cholangiocarcinoma: Machine learning analytics model to optimize treatment allocation. Hepatology 2024;79:341-54. DOI
PubMed
60. Alaimo L, Moazzam Z, Endo Y, et al. The application of artificial intelligence to investigate long-term outcomes and assess optimal
margin width in hepatectomy for intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:4292-301. DOI PubMed
61. Laplante S, Namazi B, Kiani P, et al. Validation of an artificial intelligence platform for the guidance of safe laparoscopic
cholecystectomy. Surg Endosc 2023;37:2260-8. DOI PubMed
62. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify
surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9. DOI PubMed PMC
63. Alaimo L, Endo Y, Lima HA, et al. A comprehensive preoperative predictive score for post-hepatectomy liver failure after
hepatocellular carcinoma resection based on patient comorbidities, tumor burden, and liver function: the CTF score. J Gastrointest
Surg 2022;26:2486-95. DOI PubMed
64. Winkel DJ, Weikert TJ, Breit HC, et al. Validation of a fully automated liver segmentation algorithm using multi-scale deep
reinforcement learning and comparison versus manual segmentation. Eur J Radiol 2020;126:108918. DOI PubMed
65. Ruzzenente A, Alaimo L, D’Onofrio M, et al. Perihilar cholangiocarcinoma: three-dimensional modelling algorithm to estimate
tumour extension and bile duct resection margins. Br J Surg 2024;111:znad428. DOI PubMed
66. Tomiyama K, Ghazi A, Hernandez-Alejandro R. Looking beyond the horizon: patient-specific rehearsals for complex liver surgeries
with 3D printed model. Ann Surg 2021;273:e28-30. DOI PubMed
67. Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented reality guidance for the resection of missing
colorectal liver metastases: an initial experience. World J Surg 2016;40:419-26. DOI PubMed
68. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted
liver segmentectomy. Langenbecks Arch Surg 2015;400:381-5. DOI PubMed
69. Ossa L, Lorenzini G, Milford SR, Shaw D, Elger BS, Rost M. Integrating ethics in AI development: a qualitative study. BMC Med
Ethics 2024;25:10. DOI PubMed PMC