Page 173 - Read Online
P. 173

Page 66                                                                 Endo et al. Art Int Surg 2024;4:59-67  https://dx.doi.org/10.20517/ais.2024.09

                   May 2024].
               13.      Endo Y, Alaimo L, Moazzam Z, et al. Postoperative morbidity after simultaneous versus staged resection of synchronous colorectal
                   liver metastases: impact of hepatic tumor burden. Surgery 2024;175:432-40.  DOI  PubMed
               14.      Endo Y, Alaimo L, Moazzam Z, et al. Optimal policy tree to assist in adjuvant therapy decision-making after resection of colorectal
                   liver metastases. Surgery 2024;175:645-53.  DOI  PubMed
               15.      Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov
                   Today 2021;26:80-93.  DOI  PubMed  PMC
               16.      Sageshima J, Than P, Goussous N, Mineyev N, Perez R. Prediction of high-risk donors for kidney discard and nonrecovery using
                   structured donor characteristics and unstructured donor narratives. JAMA Surg 2024;159:60-8.  DOI  PubMed  PMC
               17.      Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: how can AI contribute to health in
                   resource-poor settings? BMJ Glob Health 2018;3:e000798.  DOI  PubMed  PMC
               18.      Mollica V, Rizzo A, Marchetti A, et al. The impact of ECOG performance status on efficacy of immunotherapy and immune-based
                   combinations in cancer patients: the MOUSEION-06 study. Clin Exp Med 2023;23:5039-49.  DOI  PubMed
               19.      Gong X, Hu M, Zhao L. Big data toolsets to pharmacometrics: application of machine learning for time-to-event analysis. Clin Transl
                   Sci 2018;11:305-11.  DOI  PubMed  PMC
               20.      Barber EL, Garg R, Persenaire C, Simon M. Natural language processing with machine learning to predict outcomes after ovarian
                   cancer surgery. Gynecol Oncol 2021;160:182-6.  DOI  PubMed  PMC
               21.      Resende V, Tsilimigras DI, Endo Y, et al. Machine-based learning hierarchical cluster analysis: sex-based differences in prognosis
                   following resection of hepatocellular carcinoma. World J Surg 2023;47:3319-27.  DOI  PubMed
               22.      Boulesteix AL, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on
                   computational biology and bioinformatics. WIREs Data Mining Knowl Discov 2012;2:493-507.  DOI
               23.      Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Statist 2001;29:1189-232.  DOI
               24.      Lai Q, Spoletini G, Mennini G, et al. Prognostic role of artificial intelligence among patients with hepatocellular cancer: a systematic
                   review. World J Gastroenterol 2020;26:6679-88.  DOI  PubMed  PMC
               25.      Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inform Theory 1967;13:21-7.  DOI
               26.      Patel H, Zanos T, Hewitt DB. Deep learning applications in pancreatic cancer. Cancers 2024;16:436.  DOI  PubMed  PMC
               27.      Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int
                   2019;13:546-59.  DOI  PubMed  PMC
               28.      Endo Y, Sasaki K, Moazzam Z, et al. Quality of ChatGPT responses to questions related to liver transplantation. J Gastrointest Surg
                   2023;27:1716-9.  DOI  PubMed
               29.      Rajkomar A, Kannan A, Chen K, et al. Automatically charting symptoms from patient-physician conversations using machine
                   learning. JAMA Intern Med 2019;179:836-8.  DOI  PubMed  PMC
               30.      Moazzam Z, Lima HA, Endo Y, Noria S, Needleman B, Pawlik TM. A Paradigm shift: online artificial intelligence platforms as an
                   informational resource in bariatric surgery. Obes Surg 2023;33:2611-4.  DOI  PubMed
               31.      Ali SR, Dobbs TD, Tarafdar A, et al. Natural language processing to automate a web-based model of care and modernize skin cancer
                   multidisciplinary team meetings. Br J Surg 2024;111:znad347.  DOI  PubMed  PMC
               32.      Bcharah G, Gupta N, Panico N, et al. Innovations in spine surgery: a narrative review of current integrative technologies. World
                   Neurosurg 2024;184:127-36.  DOI  PubMed
               33.      Choksi S, Szot S, Zang C, et al. Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase
                   recognition. Surg Endosc 2023;37:8778-84.  DOI  PubMed
               34.      Takeuchi M, Kawakubo H, Saito K, et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy
                   using artificial intelligence. Ann Surg Oncol 2022;29:6847-55.  DOI  PubMed
               35.      Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol
                   2022;76:681-93.  DOI  PubMed  PMC
               36.      Matsumoto M, Yanaga K, Shiba H, et al. Treatment of intrahepatic recurrence after hepatectomy for hepatocellular carcinoma. Ann
                   Gastroenterol Surg 2021;5:538-52.  DOI  PubMed  PMC
               37.      Famularo S, Donadon M, Cipriani F, et al; HE.RC.O.LE.S. Group. Machine learning predictive model to guide treatment allocation for
                   recurrent hepatocellular carcinoma after surgery. JAMA Surg 2023;158:192-202.  DOI  PubMed  PMC
               38.      Moazzam Z, Alaimo L, Endo Y, et al. A prognostic model to predict survival after recurrence among patients with recurrent
                   hepatocellular carcinoma. Ann Surg 2024;279:471-8.  DOI  PubMed
               39.      Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Method 1996;58:267-88.  DOI
               40.      Wang K, Xiang Y, Yan J, et al. A deep learning model with incorporation of microvascular invasion area as a factor in predicting
                   prognosis of hepatocellular carcinoma after R0 hepatectomy. Hepatol Int 2022;16:1188-98.  DOI  PubMed
               41.      Ji GW, Fan Y, Sun DW, et al. Machine learning to improve prognosis prediction of early hepatocellular carcinoma after surgical
                   resection. J Hepatocell Carcinoma 2021;8:913-23.  DOI  PubMed  PMC
               42.      Iseke S, Zeevi T, Kucukkaya AS, et al. Machine learning models for prediction of posttreatment recurrence in early-stage
                   hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-concept study. AJR Am J Roentgenol 2023;220:245-
                   55.  DOI  PubMed  PMC
               43.      Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological
   168   169   170   171   172   173   174   175   176   177   178