Page 173 - Read Online
P. 173
Page 66 Endo et al. Art Int Surg 2024;4:59-67 https://dx.doi.org/10.20517/ais.2024.09
May 2024].
13. Endo Y, Alaimo L, Moazzam Z, et al. Postoperative morbidity after simultaneous versus staged resection of synchronous colorectal
liver metastases: impact of hepatic tumor burden. Surgery 2024;175:432-40. DOI PubMed
14. Endo Y, Alaimo L, Moazzam Z, et al. Optimal policy tree to assist in adjuvant therapy decision-making after resection of colorectal
liver metastases. Surgery 2024;175:645-53. DOI PubMed
15. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov
Today 2021;26:80-93. DOI PubMed PMC
16. Sageshima J, Than P, Goussous N, Mineyev N, Perez R. Prediction of high-risk donors for kidney discard and nonrecovery using
structured donor characteristics and unstructured donor narratives. JAMA Surg 2024;159:60-8. DOI PubMed PMC
17. Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: how can AI contribute to health in
resource-poor settings? BMJ Glob Health 2018;3:e000798. DOI PubMed PMC
18. Mollica V, Rizzo A, Marchetti A, et al. The impact of ECOG performance status on efficacy of immunotherapy and immune-based
combinations in cancer patients: the MOUSEION-06 study. Clin Exp Med 2023;23:5039-49. DOI PubMed
19. Gong X, Hu M, Zhao L. Big data toolsets to pharmacometrics: application of machine learning for time-to-event analysis. Clin Transl
Sci 2018;11:305-11. DOI PubMed PMC
20. Barber EL, Garg R, Persenaire C, Simon M. Natural language processing with machine learning to predict outcomes after ovarian
cancer surgery. Gynecol Oncol 2021;160:182-6. DOI PubMed PMC
21. Resende V, Tsilimigras DI, Endo Y, et al. Machine-based learning hierarchical cluster analysis: sex-based differences in prognosis
following resection of hepatocellular carcinoma. World J Surg 2023;47:3319-27. DOI PubMed
22. Boulesteix AL, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on
computational biology and bioinformatics. WIREs Data Mining Knowl Discov 2012;2:493-507. DOI
23. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Statist 2001;29:1189-232. DOI
24. Lai Q, Spoletini G, Mennini G, et al. Prognostic role of artificial intelligence among patients with hepatocellular cancer: a systematic
review. World J Gastroenterol 2020;26:6679-88. DOI PubMed PMC
25. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inform Theory 1967;13:21-7. DOI
26. Patel H, Zanos T, Hewitt DB. Deep learning applications in pancreatic cancer. Cancers 2024;16:436. DOI PubMed PMC
27. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int
2019;13:546-59. DOI PubMed PMC
28. Endo Y, Sasaki K, Moazzam Z, et al. Quality of ChatGPT responses to questions related to liver transplantation. J Gastrointest Surg
2023;27:1716-9. DOI PubMed
29. Rajkomar A, Kannan A, Chen K, et al. Automatically charting symptoms from patient-physician conversations using machine
learning. JAMA Intern Med 2019;179:836-8. DOI PubMed PMC
30. Moazzam Z, Lima HA, Endo Y, Noria S, Needleman B, Pawlik TM. A Paradigm shift: online artificial intelligence platforms as an
informational resource in bariatric surgery. Obes Surg 2023;33:2611-4. DOI PubMed
31. Ali SR, Dobbs TD, Tarafdar A, et al. Natural language processing to automate a web-based model of care and modernize skin cancer
multidisciplinary team meetings. Br J Surg 2024;111:znad347. DOI PubMed PMC
32. Bcharah G, Gupta N, Panico N, et al. Innovations in spine surgery: a narrative review of current integrative technologies. World
Neurosurg 2024;184:127-36. DOI PubMed
33. Choksi S, Szot S, Zang C, et al. Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase
recognition. Surg Endosc 2023;37:8778-84. DOI PubMed
34. Takeuchi M, Kawakubo H, Saito K, et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy
using artificial intelligence. Ann Surg Oncol 2022;29:6847-55. DOI PubMed
35. Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol
2022;76:681-93. DOI PubMed PMC
36. Matsumoto M, Yanaga K, Shiba H, et al. Treatment of intrahepatic recurrence after hepatectomy for hepatocellular carcinoma. Ann
Gastroenterol Surg 2021;5:538-52. DOI PubMed PMC
37. Famularo S, Donadon M, Cipriani F, et al; HE.RC.O.LE.S. Group. Machine learning predictive model to guide treatment allocation for
recurrent hepatocellular carcinoma after surgery. JAMA Surg 2023;158:192-202. DOI PubMed PMC
38. Moazzam Z, Alaimo L, Endo Y, et al. A prognostic model to predict survival after recurrence among patients with recurrent
hepatocellular carcinoma. Ann Surg 2024;279:471-8. DOI PubMed
39. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Method 1996;58:267-88. DOI
40. Wang K, Xiang Y, Yan J, et al. A deep learning model with incorporation of microvascular invasion area as a factor in predicting
prognosis of hepatocellular carcinoma after R0 hepatectomy. Hepatol Int 2022;16:1188-98. DOI PubMed
41. Ji GW, Fan Y, Sun DW, et al. Machine learning to improve prognosis prediction of early hepatocellular carcinoma after surgical
resection. J Hepatocell Carcinoma 2021;8:913-23. DOI PubMed PMC
42. Iseke S, Zeevi T, Kucukkaya AS, et al. Machine learning models for prediction of posttreatment recurrence in early-stage
hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-concept study. AJR Am J Roentgenol 2023;220:245-
55. DOI PubMed PMC
43. Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological