Page 117 - Read Online
P. 117

Page 109                                                              Jiao et al. Art Int Surg 2023;3:98-110  https://dx.doi.org/10.20517/ais.2023.03

               future, specifically, more autonomous actions. An emerging question is whether handheld robotic devices
                                                                      [25]
               will enable a safer and more rapid adoption of surgical autonomy .
               DECLARATIONS
               Authors’ contributions
               Made substantial contributions to the conception and design of the study and performed data analysis and
               interpretation: Jiao LR
               Performed data acquisition, as well as provided administrative, technical, and material support: Vellaisamy
               R, Gall T

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               None.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       de Rooij T, van Hilst J, Bosscha K, et al. Minimally invasive versus open pancreatoduodenectomy (LEOPARD-2): study protocol for a
                   randomized controlled trial. Trials 2018;19:1-10.  DOI
               2.       Yates DR, Vaessen C, Roupret M. From Leonardo to da Vinci: the history of robot-assisted surgery in urology.  BJU Int
                   2011;108:1708-13; discussion 14.  DOI
               3.       Yu HY, Hevelone ND, Lipsitz SR, Kowalczyk KJ, Hu JC. Use, costs and comparative effectiveness of robotic assisted, laparoscopic
                   and open urological surgery. J Urol 2012;187:1392-8.  DOI
               4.       Midura EF, Hanseman DJ, Hoehn RS, et al. The effect of surgical approach on short-term oncologic outcomes in rectal cancer surgery.
                   Surgery 2015;158:453-9.  DOI
               5.       Cheng CL, Rezac C. The role of robotics in colorectal surgery. BMJ 2018;360:j5304.  DOI
               6.       Chitwood WR Jr. Robotic cardiac surgery by 2031. Tex Heart Inst J 2011;38:691-3.  PubMed  PMC
               7.       Diodato MD Jr, Damiano RJ Jr. Robotic cardiac surgery: overview. Surg Clin North Am 2003;83:1351-67.  DOI
               8.       Giulianotti PC, Sbrana F, Bianco FM, et al. Robot-assisted laparoscopic pancreatic surgery: single-surgeon experience. Surg Endosc
                   2010;24:1646-57.  DOI
               9.       Hanly EJ, Talamini MA. Robotic abdominal surgery. Am J Surg 2004;188:19s-26s.  DOI
               10.      Boggi U, Signori S, De Lio N, et al. Feasibility of robotic pancreatoduodenectomy. Br J Surg 2013;100:917-25.  DOI
               11.      Gall TMH, Alrawashdeh W, Soomro N, White S, Jiao LR. Shortening surgical training through robotics: randomized clinical trial of
                   laparoscopic versus robotic surgical learning curves. BJS Open 2020;4:1100-8.  DOI
               12.      Liu R, Zhang T, Zhao ZM, et al. The surgical outcomes of robot-assisted laparoscopic pancreatoduodenectomy versus laparoscopic
                   pancreatoduodenectomy for periampullary neoplasms: a comparative study of a single center. Surg Endosc 2017;31:2380-6.  DOI
               13.      Klompmaker S, van Hilst J, Wellner UF, et al. Outcomes after minimally-invasive versus open pancreatoduodenectomy: a pan-
                   European propensity score matched study. Ann Surg 2020;271:356-63.  DOI
               14.      Inoue Y, Sato T, Kato T, et al. Reproduction of modified Blumgart pancreaticojejunostomy in a robotic environment: a simple clipless
                   technique. Surg Endosc 2022;36:8684-9.  DOI
   112   113   114   115   116   117   118   119   120   121   122