Page 34 - Read Online
P. 34
Page 14 of 15 Ying et al. Microstructures 2023;3:2023018 https://dx.doi.org/10.20517/microstructures.2022.47
22. Utigard TA. The properties and uses of fluxes in molten aluminum processing. JOM 1998;50:38-43. DOI
23. Lau C, Kui H. Microstructures of undercooled germanium. Acta Metall Mater 1991;39:323-7. DOI
24. Ho C, Leung C, Yip Y, Mok S, Kui H. Ductile Fe C alloys of ultrafine networklike microstructure. Metall Mat Trans A
83 17
2010;41:3443-51. DOI
25. Ho CM, Kui HW. Ductile and high strength white cast iron of ultrafine interconnected network morphology. Metall Mat Trans A
2011;42:3826-37. DOI
26. Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 2014;4:6200.
DOI
27. Gao X, Lu Y, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi eutectic high-entropy
2.1
alloy. Acta Mater 2017;141:59-66. DOI
28. Wu Z, Lu X, Wu Z, Kui H. Spinodal decomposition in Pd Ni P bulk metallic glasses. J Non Cryst Solids 2014;385:40-6. DOI
41.25 41.25 17.5
29. Chen J, Kang L, Lu H, Luo P, Wang F, He L. The general purpose powder diffractometer at CSNS. Phys Rev B Condens Matter
2018;551:370-2. DOI
30. Allen C. Larson RBVD. General structure analysis system (GSAS) report LAUR 86-748. Los Alamos national laboratory. 2004.
Available from: https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf [Last accessed on 22 March 2023].
31. Lan S, Blodgett M, Kelton KF, Ma JL, Fan J, Wang X. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-
liquid phase transition. Appl Phys Lett 2016;108:211907. DOI
32. Wu X, Wang B, Rehm C, et al. Ultra-small-angle neutron scattering study on temperature-dependent precipitate evolution in
CoCrFeNiMo high entropy alloy. Acta Mater 2022;222:117446. DOI
0.3
33. Xu S, Li J, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel. Int J
Plast 2020;128:102677. DOI
34. Clausen B, Lorentzen T, Bourke MA, Daymond MR. Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater
Sci Eng A 1999;259:17-24. DOI
35. Pang J, Holden T, Wright J, Mason T. The generation of intergranular strains in 309H stainless steel under uniaxial loading. Acta
Mater 2000;48:1131-40. DOI
36. Ma L, Wang L, Nie Z, et al. Reversible deformation-induced martensitic transformation in Al CoCrFeNi high-entropy alloy
0.6
investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Mater 2017;128:12-21. DOI
37. Fu B, Yang W, Wang Y, Li L, Sun Z, Ren Y. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-
energy X-ray diffraction. Acta Mater 2014;76:342-54. DOI
38. Warren BE. X-ray diffraction. Courier Corporation; 1990. Available from: https://scholar.google.com/
scholar?cluster=15231993657912304740&hl=zh-TW&as_sdt=0,5 [Last accessed on 22 March 2023].
39. He H, Naeem M, Zhang F, et al. Stacking fault driven phase transformation in CrCoNi medium entropy alloy. Nano Lett
2021;21:1419-26. DOI PubMed
40. Taylor GI. Plastic strain in metals. Available from: https://cir.nii.ac.jp/crid/1573105974372618880 [Last accessed on 22 March 2023].
41. Cheng S, Stoica AD, Wang XL, et al. Deformation crossover: from nano- to mesoscale. Phys Rev Lett 2009;103:035502. DOI
PubMed
42. Wang B, He H, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scr Mater 2018;155:54-7. DOI
43. Chen X, Wang Q, Cheng Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 2021;592:712-6.
DOI PubMed
44. Lan S, Zhu L, Wu Z, et al. A medium-range structure motif linking amorphous and crystalline states. Nat Mater 2021;20:1347-52.
DOI
45. Lan S, Wu Z, Wei X, et al. Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses. Acta
Mater 2018;149:108-18. DOI
46. Li Q, Kui H. Formation of bulk magnetic nanostructured Fe Ni P B alloys by metastable liquid state phase separation. MRS Online
6
40 14
40
Proc Lib 1999;581:277-82. DOI
47. Cahn JW. On spinodal decomposition. Acta Metall 1961;9:795-801. DOI
48. Nagashio K, Kuribayashi K. Growth mechanism of twin-related and twin-free facet Si dendrites. Acta Mater 2005;53:3021-9. DOI
49. Schwarz M, Karma A, Eckler K, Herlach DM. Physical mechanism of grain refinement in solidification of undercooled melts. Phys
Rev Lett 1994;73:1380-3. DOI PubMed
50. Herlach DM, Simons D, Pichon PY. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge-Si alloys. Philos Trans A
Math Phys Eng Sci 2018;376:20170205. DOI PubMed PMC
51. Jackson K. The present state of the theory of crystal growth from the melt. J Cryst Growth 1974;24-25:130-6. DOI
52. Cahn JW. Theory of crystal growth and interface motion in crystalline materials. Acta Metall 1960;8:554-62. DOI
53. Fan J, Zhang L, Yu P, et al. A novel high-entropy alloy with a dendrite-composite microstructure and remarkable compression
performance. Scr Mater 2019;159:18-23. DOI
54. Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting
microstructural lamellae. Nat Commun 2019;10:489. DOI PubMed PMC
55. Wu Z, Bei H, Otto F, Pharr G, George E. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured
multi-component equiatomic solid solution alloys. Intermetallics 2014;46:131-40. DOI