Page 482 - Read Online
P. 482

Agdamag et al. Vessel Plus 2020;4:42  I  http://dx.doi.org/10.20517/2574-1209.2020.60                                            Page 7 of 9

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2020.

               REFERENCES
               1.   Rosenson RS, Hegele RA, Fazio S, Cannon CP. The evolving future of PCSK9 Inhibitors. J Am Coll Cardiol 2018;72:314-29.
               2.   Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from
                   genetic, epidemiologic, and clinical studies. A consensus statement from the european atherosclerosis society consensus panel. Eur Heart
                   J 2017;38:2459-72.
               3.   Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90056 participants in 14 randomised trials
                   of statins. Lancet 2005;366:1267-78.
               4.   Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline
                   on the management of blood cholesterol: a report of the american college of cardiology/American heart association task force on clinical
                   practice guidelines. J Am Coll Cardiol 2019;73:e285-350.
               5.   Authors/Task Force Members, ESC committee for practice guidelines (CPG), ESC national cardiac societies. 2019 ESC/EAS guidelines
                   for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 2019;290:140-205.
               6.   Roth EM, Davidson MH. PCSK9 Inhibitors: mechanism of action, efficacy, and safety. Rev Cardiovasc Med 2018;19:S31-46.
               7.   Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009;29:431-8.
               8.   Ding Z, Wang X, Liu S, et al. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and
                   development of autophagy. Cardiovasc Res 2018;114:1738-51.
               9.   Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and
                   LOX-1. Cardiovasc Res 2020;116:908-15.
               10.  Ding Z, Liu S, Wang X, et al. Cross-Talk Between PCSK9 and Damaged mtDNA in Vascular Smooth Muscle Cells: Role in Apoptosis.
                   Antioxid Redox Signal 2016;25:997-1008.
               11.  Ding Z, Liu S, Wang X, et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res 2015;107:556-67.
               12.  Ding Z, Liu S, Wang X, et al. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and
                   smooth muscle cells and along the mouse aorta. Antioxid Redox Signal 2015;22:760-71.
               13.  Ding Z, Liu S, Wang X, et al. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res
                   2018;114:1145-53.
               14.  Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med
                   2018;117:76-89.
               15.  von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation
                   1999;99:2934-41.
               16.  Zhao ZQ, Velez DA, Wang NP, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis
                   2001;6:279-90.
               17.  Palee S, McSweeney CM, Maneechote C, et al. PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with
                   ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. J Cell Mol Med 2019;23:7310-9.
               18.  Sabatine MS, Giugliano RP, Wiviott SD, et al; Open-label study of long-term evaluation against LDL cholesterol (OSLER) investigators.
                   Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372:1500-9.
               19.  Schwartz GG, Steg PG, Szarek M, et al; ODYSSEY OUTCOMES committees and investigators. Alirocumab and cardiovascular
                   outcomes after acute coronary syndrome. N Engl J Med 2018;379:2097-107.
               20.  Murphy SA, Pedersen TR, Gaciong ZA, et al. Effect of the PCSK9 inhibitor evolocumab on total cardiovascular events in patients with
                   cardiovascular disease: a prespecified analysis from the FOURIER trial. JAMA Cardiol 2019;4:613-9.
               21.  Giugliano RP, Pedersen TR, Park J, et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the
                   PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet 2017;390:1962-71.
               22.  Gürgöze MT, Muller-Hansma AHG, Schreuder MM, Galema-Boers AMH, Boersma E, Roeters van Lennep JE. Adverse events associated
                   with PCSK9 inhibitors: a real-world experience. Clin Pharmacol Ther 2019;105:496-504.
               23.  Kosmas CE, Muñoz Estrella A, Sourlas A, et al. Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases
                   2018;6:63.
   477   478   479   480   481   482   483   484   485   486   487