Page 431 - Read Online
P. 431

Linger et al. Vessel Plus 2020;4:36  I  http://dx.doi.org/10.20517/2574-1209.2020.51                                                 Page 9 of 9

                   large mismatch imaging profile. JAMA Neurol 2017;74:34-40.
               35.  Kumar G, Shahripour RB, Alexandrov AV. Recanalization of acute basilar artery occlusion improves outcomes: a meta-analysis. J
                   Neurointerv Surg 2015;7:868-74.
               36.  Liu X, Dai Q, Ye R, et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an
                   open-label, randomised controlled trial. Lancet Neurol 2020;19:115-22.
               37.  Schonewille W. BASICS - A randomized acute stroke trial of endovascular therapy in acute basilar artery occlusion. European Stroke
                   Organisation Conference 2020 Large Clinical Trials - Webinar. Available from: https://eso-wso-conference.org/eso-wso-may-webinar/.
                   [Last accessed on 12 Nov 2020]
               38.  Yang P, Zhang Y, Zhang L, et al; DIRECT-MT Investigators. Endovascular thrombectomy with or without intravenous alteplase in acute
                   stroke. N Engl J Med 2020;382:1981-93.
               39.  Campbell BCV, Mitchell PJ, Churilov L, et al; EXTEND-IA TNK Investigators. Tenecteplase versus alteplase before thrombectomy for
                   ischemic stroke. N Engl J Med 2018;378:1573-82.
               40.  Campbell BCV, Mitchell PJ, Churilov L, et al; EXTEND-IA TNK Part 2 investigators. Effect of intravenous tenecteplase dose on cerebral
                   reperfusion before thrombectomy in patients with large vessel occlusion ischemic stroke: the EXTEND-IA TNK part 2 randomized
                   clinical trial. JAMA 2020;323:1257-65.
               41.  Abdullah AR, Smith EE, Biddinger PD, Kalenderian D, Schwamm LH. Advance hospital notification by EMS in acute stroke is
                   associated with shorter door-to-computed tomography time and increased likelihood of administration of tissue-plasminogen activator.
                   Prehosp Emerg Care 2008;12:426-31.
               42.  McKinney JS, Mylavarapu K, Lane J, Roberts V, Ohman-Strickland P, Merlin MA. Hospital prenotification of stroke patients by
                   emergency medical services improves stroke time targets. J Stroke Cerebrovasc Dis 2013;22:113-8.
               43.  Lin CB, Peterson ED, Smith EE, et al. Emergency medical service hospital prenotification is associated with improved evaluation and
                   treatment of acute ischemic stroke. Circ Cardiovasc Qual Outcomes 2012;5:514-22.
               44.  Noorian AR, Sanossian N, Shkirkova K, et al; FAST-MAG Trial Investigators and Coordinators. Los Angeles motor scale to identify large
                   vessel occlusion: prehospital validation and comparison with other screens. Stroke 2018;49:565-72.
               45.  Pérez de la Ossa N, Carrera D, Gorchs M, et al. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the
                   rapid arterial occlusion evaluation scale. Stroke 2014;45:87-91.
               46.  Zhao H, Pesavento L, Coote S, et al. Ambulance clinical triage for acute stroke treatment: paramedic triage algorithm for large vessel
                   occlusion. Stroke 2018;49:945-51.
               47.  Zhao H, Coote S, Easton D, et al. Melbourne mobile stroke unit and reperfusion therapy: greater clinical impact of thrombectomy than
                   thrombolysis. Stroke 2020;51:922-30.
               48.  Audebert HJ. The effects of mobile stroke units on functional outcome after acute cerebral ischemia (B_PROUD). 2020. Available from:
                   https://professional.heart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_505623.pdf. [Last accessed
                   on 12 Nov 2020]
               49.  Meretoja A, Weir L, Ugalde M, et al. Helsinki model cut stroke thrombolysis delays to 25 minutes in Melbourne in only 4 months.
                   Neurology 2013;81:1071-6.
               50.  Meretoja A, Strbian D, Mustanoja S, Tatlisumak T, Lindsberg PJ, Kaste M. Reducing in-hospital delay to 20 minutes in stroke
                   thrombolysis. Neurology 2012;79:306-13.
               51.  Wu TY, Coleman E, Wright SL, et al. Helsinki stroke model is transferrable with “real-world” resources and reduced stroke thrombolysis
                   delay to 34 min in christchurch. Front Neurol 2018;9:290.
               52.  Campbell BCV. Optimal imaging at the primary stroke center. Stroke 2020;51:1932-40.
               53.  Jadhav AP, Kenmuir CL, Aghaebrahim A, et al. Interfacility transfer directly to the neuroangiography suite in acute ischemic stroke
                   patients undergoing thrombectomy. Stroke 2017;48:1884-9.
               54.  Ribo M, Boned S, Rubiera M, et al. Direct transfer to angiosuite to reduce door-to-puncture time in thrombectomy for acute stroke. J
                   Neurointerv Surg 2018;10:221-4.
               55.  Mendez B, Requena M, Aires A, et al. Direct transfer to angio-suite to reduce workflow times and increase favorable clinical outcome.
                   Stroke 2018;49:2723-7.
               56.  Nikoubashman O, Dekeyzer S, Riabikin A, et al. True first-pass effect. Stroke 2019;50:2140-6.
               57.  Hill MD, Goyal M, Menon BK, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a
                   multicentre, double-blind, randomised controlled trial. Lancet 2020;395:878-87.
   426   427   428   429   430   431   432   433   434   435   436