Page 274 - Read Online
P. 274

Page 10 of 11                                                   Vasefi et al. Vessel Plus 2020;4:24  I  http://dx.doi.org/10.20517/2574-1209.2020.16

                   2009;387:407-15.
               69.  Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, et al. Alzheimer’s beta-amyloid peptides compete for insulin binding to
                   the insulin receptor. J Neurosci 2002;22:RC221.
               70.  Minano-Molina AJ, Espana J, Martin E, Barneda-Zahonero B, Fado R, et al. Soluble oligomers of amyloid-beta peptide disrupt membrane
                   trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol
                   Chem 2011;286:27311-21.
               71.  Liu H, Saffi GT, Vasefi MS, Choi Y, Kruk JS, et al. Amyloid-beta inhibits PDGFbeta receptor activation and prevents PDGF-BBInduced
                   neuroprotection. Curr Alzheimer Res 2018;15:618-27.
               72.  Vasefi MS, Kruk JS, Heikkila JJ, Beazely MA. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced
                   excitotoxicity is PDGFbeta receptor dependent. J Neurochem 2013;125:26-36.
               73.  Paul G, Sullivan AM. Trophic factors for Parkinson’s disease: where are we and where do we go from here? Eur J Neurosci
                   2019;49:440-52.
               74.  Tome D, Fonseca CP, Campos FL, Baltazar G. Role of neurotrophic factors in Parkinson’s disease. Curr Pharm Des 2017;23:809-38.
               75.  Lue LF, Schmitz CT, Snyder NL, Chen K, Walker DG, et al. Converging mediators from immune and trophic pathways to identify
                   Parkinson disease dementia. Neurol Neuroimmunol Neuroinflamm 2016;3:e193.
               76.  Cabezas R, Avila MF, Gonzalez J, El-Bacha RS, Barreto GE. PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox
                   Res 2015;27:355-67.
               77.  Cabezas R, Vega-Vela NE, Gonzalez-Sanmiguel J, Gonzalez J, Esquinas P, et al. PDGF-BB preserves mitochondrial morphology,
                   attenuates ROS production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol Neurobiol 2018;55:3085-95.
               78.  Miyazaki I, Asanuma M. Therapeutic strategy of targeting astrocytes for neuroprotection in Parkinson’s disease. Curr Pharm Des
                   2017;23:4936-47.
               79.  Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, et al. Growth factors and neuroglobin in astrocyte protection
                   against neurodegeneration and oxidative stress. Mol Neurobiol 2019;56:2339-51.
               80.  Okada T, Hirai C, Badawy SMM, Zhang L, Kajimoto T, et al. Impairment of PDGF-induced chemotaxis by extracellular alpha-synuclein
                   through selective inhibition of Rac1 activation. Sci Rep 2016;6:37810.
               81.  Tang Z, Arjunan P, Lee C, Li Y, Kumar A, et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by
                   regulating GSK3beta phosphorylation. J Exp Med 2010;207:867-80.
               82.  Shah BH, Catt KJ. GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci 2004;27:48-53.
               83.  Kruk JS, Kouchmeshky A, Grimberg N, Rezkella M, Beazely MA. Transactivation of receptor tyrosine kinases by dopamine receptors.
                   Dopamine Receptor Technologies. New York, NY: Springer New York; 2015. pp. 211-27.
               84.  Gill RS, Hsiung MS, Sum CS, Lavine N, Clark SD, et al. The dopamine D4 receptor activates intracellular platelet-derived growth factor
                   receptor beta to stimulate ERK1/2. Cell Signal 2010;22:285-90.
               85.  Heeneman S, Haendeler J, Saito Y, Ishida M, Berk BC. Angiotensin II induces transactivation of two different populations of the platelet-
                   derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J Biol Chem 2000;275:15926-32.
               86.  Shen Y, Monsma FJ Jr, Metcalf MA, Jose PA, Hamblin MW, et al. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin
                   receptor subtype. J Biol Chem 1993;268:18200-4.
               87.  Thomas DR, Hagan JJ. 5-HT7 receptors. Curr Drug Targets CNS Neurol Disord 2004;3:81-90.
               88.  Speranza L, Labus J, Volpicelli F, Guseva D, Lacivita E, et al. Serotonin 5-HT7 receptor increases the density of dendritic spines and
                   facilitates synaptogenesis in forebrain neurons. J Neurochem 2017;141:647-61.
               89.  Vasefi MS, Kruk JS, Liu H, Heikkila JJ, Beazely MA. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor
                   beta receptor expression. Neurosci Lett 2012;511:65-9.
               90.  Samarajeewa A, Goldemann L, Vasefi MS, Ahmed N, Gondora N, et al. 5-HT7 receptor activation promotes an increase in TrkB receptor
                   expression and phosphorylation. Front Behav Neurosci 2014;8:391.
               91.  Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to
                   inhibit NMDA receptor transmission. Neuron 2002;35:1111-22.
               92.  Vasefi MS, Yang K, Li J, Kruk JS, Heikkila JJ, et al. Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially
                   alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol Brain 2013;6:24.
               93.  Kanki H, Sasaki T, Matsumura S, Yokawa S, Yukami T, et al. beta-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial
                   function via PDGF-beta in stroke. Cell Death Dis 2019;10:100.
               94.  Abassi M, Morawski BM, Nakigozi G, Nakasujja N, Kong X, et al. Cerebrospinal fluid biomarkers and HIV-associated neurocognitive
                   disorders in HIV-infected individuals in Rakai, Uganda. J Neurovirol 2017;23:369-75.
               95.  Jung KH, Chu K, Lee ST, Bahn JJ, Jeon D, et al. Multipotent PDGFRbeta-expressing cells in the circulation of stroke patients. Neurobiol
                   Dis 2011;41:489-97.
               96.  Bjorkqvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer’s
                   disease. PLoS One 2012;7:e29868.
               97.  Rocha de Paula M, Gomez Ravetti M, Berretta R, Moscato P. Differences in abundances of cell-signalling proteins in blood reveal novel
                   biomarkers for early detection of clinical Alzheimer’s disease. PLoS One 2011;6:e17481.
               98.  Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, et al. Novel CSF biomarkers for Alzheimer’s disease and mild cognitive
                   impairment. Acta Neuropathol 2010;119:669-78.
               99.  Mahlknecht P, Stemberger S, Sprenger F, Rainer J, Hametner E, et al. An antibody microarray analysis of serum cytokines in
   269   270   271   272   273   274   275   276   277   278   279