Page 237 - Read Online
P. 237

Reiss et al. Vessel Plus 2020;4:19  I  http://dx.doi.org/10.20517/2574-1209.2020.04                                                      Page 9 of 10

                   receptor γ) deletion impairs perivascular adipose tissue development and enhances atherosclerosis in mice. Arterioscler Thromb Vasc Biol
                   2018;38:1738-47.
               58.  Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol
                   Metab 2007;293:E444-52.
               59.  Cypess AM, Lehman S, Williams G, Tal I, Rodman D, et al. Identification and importance of brown adipose tissue in adult humans. N
                   Engl J Med 2009;360:1509-17.
               60.  Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med
                   2011;17:200-5.
               61.  Liu X, Zheng Z, Zhu X, Meng M, Li L, et al. Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res
                   2013;23:851-4.
               62.  Geerling JJ, Boon MR, van der Zon GC, van den Berg SA, van den Hoek AM, et al. Metformin lowers plasma triglycerides by promoting
                   VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 2014;63:880-91.
               63.  Tanyanskiy DA, Pigarevskii PV, Maltseva SV, Denisenko AD. Immunohistochemical analysis of adiponectin in atherosclerotic lesions of
                   human aorta. ARYA Atheroscler 2019;15:179-84.
               64.  Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017;18:1321.
               65.  Magni P, Liuzzi A, Ruscica M, Dozio E, Ferrario S, et al. Free and bound plasma leptin in normal weight and obese men and women:
                   relationship with body composition, resting energy expenditure, insulin-sensitivity, lipid profile and macronutrient preference. Clin
                   Endocrinol (Oxf) 2005;62:189-96.
               66.  Hartwig S, De Filippo E, Göddeke S, Knebel B, Kotzka J, et al. Exosomal proteins constitute an essential part of the human adipose tissue
                   secretome. Biochim Biophys Acta Proteins Proteom 2019;1867:140172.
               67.  Phoonsawat W, Aoki-Yoshida A, Tsuruta T, Sonoyama K. Adiponectin is partially associated with exosomes in mouse serum. Biochem
                   Biophys Res Commun 2014;448:261-6.
               68.  Lee JE, Moon PG, Lee IK, Baek MC. Proteomic analysis of extracellular vesicles released by adipocytes of otsuka long-evans tokushima
                   fatty (OLETF) rats. Protein J 2015;34:220-35.
               69.  Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-83.
               70.  Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med 2018;379:2180-1.
               71.  Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, et al. High-resolution proteomic and lipidomic analysis of exosomes and
                   microvesicles from different cell sources. J Extracell Vesicles 2016;5:32570.
               72.  Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, et al. Ceramide triggers budding of exosome vesicles into multivesicular
                   endosomes. Science 2008;319:1244-7.
               73.  Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in
                   exosome biology. J Lipid Res 2019;60:9-18.
               74.  Yoon Y, Kim O, Gho Y. Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 2014;47:531-9.
               75.  O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol
                   2018;9:402.
               76.  Dini L, Tacconi S, Carata E, Tata AM, Vergallo C, et al. Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine
                   Growth Factor Rev 2020;51:27-39.
               77.  Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu
                   Rev Cell Dev Biol 2014;30:255-89.
               78.  Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, et al. Exosomal microRNA miR-92a concentration in serum reflects human brown fat
                   activity. Nat Commun 2016;27;7:11420.
               79.  Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, et al. Adipose-derived circulating miRNAs regulate gene expression in
                   other tissues. Nature 2017;542:450-5.
               80.  Ortega FJ, Moreno M, Mercader JM, Moreno-Navarrete JM, Fuentes-Batllevell N, et al. Inflammation triggers specific microRNA
                   profiles in human adipocytes and macrophages and in their supernatants. Clin Epigenetics 2015;7:49.
               81.  Ortega FJ, Mercader JM, Moreno-Navarrete JM, Nonell L, Puigdecanet E, et al. Surgery-induced weight loss is associated with the
                   downregulation of genes targeted by microRNAs in adipose tissue. J Clin Endocrinol Metab 2015;100:E1467-76.
               82.  Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-
                   related disease. Pediatr Res 2015;77:447-54.
               83.  Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, et al. Differential expression of microRNAs in adipose tissue
                   after long-term high-fat diet-induced obesity in mice. PLoS One 2012;7:e34872.
               84.  Chang W, Wang J. Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells 2019;8:E853.
               85.  Mori MA, Thomou T, Boucher J, Lee KY, Lallukka S, et al. Altered miRNA processing disrupts brown/white adipocyte determination
                   and associates with lipodystrophy. J Clin Invest 2014;124:3339-51.
               86.  Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, et al. Adipose tissue macrophage-derived exosomal miRNAs can
                   modulate in vivo and in vitro insulin sensitivity. Cell 2017;171:372-84.e12.
               87.  Chen Y, Pfeifer A. Brown fat-derived exosomes: small vesicles with big impact. Cell Metab 20174;25:759-60.
               88.  Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive
                   thermogenesis. Genes Dev 2012;26:271-81.
               89.  Kokkinos J, Tang S, Rye KA, Ong KL. The role of fibroblast growth factor 21 in atherosclerosis. Atherosclerosis 2017;257:259-65.
   232   233   234   235   236   237   238   239   240   241   242