Page 227 - Read Online
P. 227

Sobenin. Vessel Plus 2020;4:18  I  http://dx.doi.org/10.20517/2574-1209.2020.09                                                           Page 5 of 6

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2020.


               REFERENCES
               1.   Schwartz CJ, Valente AJ, Sprague EA. A modern view of atherogenesis. Am J Cardiol 1993;71:9B-14.
               2.   Summerhill V, Orekhov A. Pericytes in atherosclerosis. Adv Exp Med Biol 2019;1147:279-97.
               3.   Orekhov AN, Tertov VV, Novikov ID, Krushinsky AV, Andreeva ER, et al. Lipids in cells of atherosclerotic and uninvolved human
                   aorta. I. Lipid composition of aortic tissue and enzyme-isolated and cultured cells. Exp Mol Pathol 1985;42:117-37.
               4.   Orekhov AN. LDL and foam cell formation as the basis of atherogenesis. Curr Opin Lipidol 2018;29:279-84.
               5.   Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y, et al. Atherosclerotic cardiovascular disease: a review of initiators and protective
                   factors. Inflammopharmacology 2016;24:1-10.
               6.   Morita SY. Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biol
                   Pharm Bull 2016;39:1-24.
               7.   Arnao V, Tuttolomondo A, Daidone M, Pinto A. Lipoproteins in atherosclerosis process. Curr Med Chem 2019;26:1525-43.
               8.   Nakajima K, Tanaka A. Atherogenic postprandial remnant lipoproteins; VLDL remnants as a causal factor in atherosclerosis. Clin Chim
                   Acta 2018;478:200-15.
               9.   Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol
                   2019;16:727-44.
               10.  Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. Vascul
                   Pharmacol 2019;112:54-71.
               11.  Alipov VI, Sukhorukov VN, Karagodin VP, Grechko AV, Orekhov AN. Chemical composition of circulating native and desialylated low
                   density lipoprotein: what is the difference? Vessel Plus 2017;1:107-15.
               12.  Summerhill VI, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. The atherogenic role of circulating modified lipids in atherosclerosis. Int
                   J Mol Sci 2019;20:E3561.
               13.  Orekhov AN, Sobenin IA. Modified and dysfunctional lipoproteins in atherosclerosis: effectors or biomarkers? Curr Med Chem
                   2019;26:1512-24.
               14.  Orekhov AN, Sobenin IA. Modified lipoproteins as biomarkers of atherosclerosis. Front Biosci (Landmark Ed) 2018;23:1422-44.
               15.  Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the
                   pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol 2016;27:473-83.
               16.  Hurt-Camejo E, Camejo G. ApoB-100 lipoprotein complex formation with intima proteoglycans as a cause of atherosclerosis and its
                   possible ex vivo evaluation as a disease biomarker. J Cardiovasc Dev Dis 2018;5:E36.
               17.  Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J
                   Mol Med (Berl) 2017;95:1153-65.
               18.  Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic
                   opportunities. Nat Rev Cardiol 2019;16:389-406.
               19.  Poznyak AV, Wu WK, Melnichenko AA, Wetzker R, Sukhorukov V, et al. Signaling pathways and key genes involved in regulation of
                   foam cell formation in atherosclerosis. Cells 2020;9:E584.
               20.  Albany CJ, Trevelin SC, Giganti G, Lombardi G, Scottà C. Getting to the heart of the matter: the role of regulatory T-cells (Tregs) in
                   cardiovascular disease (CVD) and atherosclerosis. Front Immunol 2019;10:2795.
               21.  Nasser MI, Zhu S, Huang H, Zhao M, Wang B, et al. Macrophages: first guards in the prevention of cardiovascular diseases. Life Sci
                   2020;250:117559.
               22.  Shi X, Gao J, Lv Q, Cai H, Wang F, et al. Calcification in atherosclerotic plaque vulnerability: friend or foe? Front Physiol 2020;11:56.
               23.  Wang C, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular
                   senescence. Circ Res 2012;111:245-59.
               24.  Yao YG, Kajigaya S, Feng X, Samsel L, McCoy JP Jr, et al. Accumulation of mtDNA variations in human single CD34+ cells from
                   maternally related individuals: effects of aging and family genetic background. Stem Cell Res 2013;10:361-70.
               25.  Sobenin IA, Chistiakov DA, Bobryshev YV, Postnov AY, Orekhov AN. Mitochondrial mutations in atherosclerosis: new solutions in
                   research and possible clinical applications. Curr Pharm Des 2013;19:5942-53.
               26.  Sobenin IA. Mitochondrial DNA damage in atherosclerosis. In: Parine NR, editor. Genetic Polymorphisms. Croatia: InTech; 2017. pp.
                   139-58.
               27.  Volobueva A, Grechko A, Yet SF, Sobenin I, Orekhov A. Changes in mitochondrial genome associated with predisposition to
                   atherosclerosis and related disease. Biomolecules 2019;9:377.
               28.  Sazonova MA, Ryzhkova AI, Sinyov VV, Sazonova MD, Khasanova ZB, et al. Creation of cultures containing mutations linked with
                   cardiovascular diseases using transfection and genome editing. Curr Pharm Des 2019;25:693-9.
   222   223   224   225   226   227   228   229   230   231   232