Page 102 - Read Online
P. 102
Page 16 of 18 Kozarov et al. Vessel Plus 2020;4:10 I http://dx.doi.org/10.20517/2574-1209.2019.31
2000 2000;24:153-92.
87. Potempa J, Sroka A, Imamura T, Travis J. Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas
gingivalis: structure, function and assembly of multidomain protein complexes. Curr Protein Pept Sci 2003;4:397-407.
88. Travis J, Banbula A, Potempa J. The role of bacterial and host proteinases in periodontal disease. Adv Exp Med Biol 2000;477:455-65.
89. Johansson A, Kalfas S. Characterization of the proteinase-dependent cytotoxicity of Porphyromonas gingivalis. Eur J Oral Sci
1998;106:863-71.
90. Chen T, Nakayama K, Belliveau L, Duncan MJ. Porphyromonas gingivalis gingipains and adhesion to epithelial cells. Infect Immun
2001;69:3048-56.
91. Roth GA, Ankersmit HJ, Brown VB, Papapanou PN, Schmidt AM, et al. Porphyromonas gingivalis infection and cell death in human
aortic endothelial cells. FEMS Microbiol Lett 2007;272:106-13.
92. Hirasawa M, Kurita-Ochiai T. Porphyromonas gingivalis induces apoptosis and autophagy via ER stress in human umbilical vein
endothelial cells. Mediators Inflamm 2018;2018:1967506.
93. Pham K, Feik D, Hammond BF, Rams TE, Whitaker EJ. Aggregation of human platelets by gingipain-R from Porphyromonas
gingivalis cells and membrane vesicles. Platelets 2002;13:21-30.
94. Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, et al. Activation of protease-activated receptors by gingipains from
Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 2001;97:3790-7.
95. Arvanitidis E, Bizzarro S, Alvarez Rodriguez E, Loos BG, Nicu EA. Reduced platelet hyper-reactivity and platelet-leukocyte
aggregation after periodontal therapy. Thromb J 2017;15:5.
96. Klarström Engström K, Khalaf H, Kälvegren H, Bengtsson T. The role of Porphyromonas gingivalis gingipains in platelet activation
and innate immune modulation. Mol Oral Microbiol 2015;30:62-73.
97. Lönn J, Ljunggren S, Klarström-Engström K, Demirel I, Bengtsson T, et al. Lipoprotein modifications by gingipains of
Porphyromonas gingivalis. J Periodontal Res 2018;53:403-13.
98. Joo JY, Cha GS, Chung J, Lee JY, Kim SJ, et al. Peptide 19 of porphyromonas gingivalis heat shock protein is a potent inducer of low-
density lipoprotein oxidation. J Periodontol 2017;88:e58-e64.
99. Wallet SM, Puri V, Gibson FC. Linkage of infection to adverse systemic complications: periodontal disease, toll-like receptors, and
other pattern recognition systems. Vaccines (Basel) 2018;6:21.
100. Hernández-Ríos P, Pussinen PJ, Vernal R, Hernández M. Oxidative stress in the local and systemic events of apical periodontitis. Front
Physiol 2017;8:869.
101. Sessa R, Pietro MD, Filardo S, Turriziani O. Infectious burden and atherosclerosis: a clinical issue. World J Clin Cases 2014;2:240-9.
102. He F, Zuo L. Redox roles of reactive oxygen species in cardiovascular diseases. Int J Mol Sci 2015;16:27770-80.
103. Di Pietro M, Filardo S, Falasca F, Turriziani O, Sessa R. Infectious agents in atherosclerotic cardiovascular diseases through oxidative
stress. Int J Mol Sci 2017;18:2459.
104. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res
2017;120:713-35.
105. Li L, Michel R, Cohen J, Decarlo A, Kozarov E. Intracellular survival and vascular cell-to-cell transmission of Porphyromonas
gingivalis. BMC Microbiol 2008;8:26.
106. Azenabor AA, Yang S, Job G, Adedokun OO. Elicitation of reactive oxygen species in Chlamydia pneumoniae-stimulated
macrophages: a Ca2+-dependent process involving simultaneous activation of NADPH oxidase and cytochrome oxidase genes. Med
Microbiol Immunol 2005;194:91-103.
107. Di Pietro M, Filardo S, De Santis F, Sessa R. Chlamydia pneumoniae infection in atherosclerotic lesion development through oxidative
stress: a brief overview. Int J Mol Sci 2013;14:15105-20.
108. Yamaguchi Y, Kurita-Ochiai T, Kobayashi R, Suzuki T, Ando T. Activation of the NLRP3 inflammasome in Porphyromonas
gingivalis-accelerated atherosclerosis. Pathog Dis 2015;73:ftv011.
109. Li XY, Wang C, Xiang XR, Chen FC, Yang CM, et al. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by
affecting CD36 and ATP-binding cassette transporter A1 in macrophages. Oncol Rep 2013;30:1329-36.
110. Pollreisz A, Huang Y, Roth GA, Cheng B, Kebschull M, et al. Enhanced monocyte migration and pro-inflammatory cytokine
production by Porphyromonas gingivalis infection. J Periodontal Res 2010;45:239-45.
111. Sheets SM, Potempa J, Travis J, Casiano CA, Fletcher HM. Gingipains from Porphyromonas gingivalis W83 induce cell adhesion
molecule cleavage and apoptosis in endothelial cells. Infect Immun 2005;73:1543-52.
112. Bugueno IM, Khelif Y, Seelam N, Morand DN, Tenenbaum H, et al. Porphyromonas gingivalis differentially modulates cell death
profile in Ox-LDL and TNF-α pre-treated endothelial cells. PLoS One 2016;11:e0154590.
113. Shiheido Y, Maejima Y, Suzuki JI, Aoyama N, Kaneko M, et al. Porphyromonas gingivalis, a periodontal pathogen, enhances
myocardial vulnerability, thereby promoting post-infarct cardiac rupture. J Mol Cell Cardiol 2016;99:123-37.
114. Amberger A, Maczek C, Jürgens G, Michaelis D, Schett G, et al. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human
arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 1997;2:94-103.
115. Takei A, Huang Y, Lopes-Virella MF. Expression of adhesion molecules by human endothelial cells exposed to oxidized low density
lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis 2001;154:79-86.
116. Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and atherosclerosis: mechanistic aspects. Biomolecules
2019;9:301.
117. Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med 2010;14:70-8.