Page 328 - Read Online
P. 328
Echeverria-Villalobos et al. Vessel Plus 2019;3:33 I http://dx.doi.org/10.20517/2574-1209.2019.12 Page 11 of 12
Cardiov Sur 1999;118:237-44.
57. Liu M, Tanswell AK, Post M. Mechanical force-induced signal transduction in lung cells. Am J Physiol 1999;277:L667-83.
58. Nicholas T. Control of turnover of alveolar surfactant. Physiology 1993;8:12-8.
59. Nicholas TE, Power JH, Barr HA. The pulmonary consequences of a deep breath. Resp Physiol 1982;49:315-24.
60. Govender M, Bihari S, Bersten AD, De Pasquale CG, Lawrence MD, et al. Surfactant and lung function following cardiac surgery.
Heart Lung 2019;48:55-60.
61. Loeckinger A, Kleinsasser A, Lindner KH, Margreiter J, Keller C, et al. Continuous positive airway pressure at 10 cm H2O during
cardiopulmonary bypass improves postoperative gas exchange. Anesth Analg 2000;91:522-7.
62. Magnusson L, Zemgulis V, Tenling A, Wernlund J, Tyden H, et al. Use of a Vital Capacity Maneuver to Prevent Atelectasis after
Cardiopulmonary Bypass An Experimental Study. Anesthesiology: JASA 1998;88:134-42.
63. Schlensak C, Doenst T, Preußer S, Wunderlich M, Kleinschmidt M, et al. Bronchial artery perfusion during cardiopulmonary bypass
does not prevent ischemia of the lung in piglets: assessment of bronchial artery blood flow with fluorescent microspheres. Eur J
Cardiothorac Surg 2001;19:326-32.
64. Gasparovic H, Plestina S, Sutlic Z, Husedzinovic I, Coric V, et al. Pulmonary lactate release following cardiopulmonary bypass. Eur J
Cardiothorac Surg 2007;32:882-7.
65. Ferrari RS, Andrade CF. Oxidative stress and lung ischemia-reperfusion injury. Oxid Med Cell Longev 2015;2015:590987.
66. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, et al. Myocardial ischemia reperfusion injury: from basic science to clinical
bedside. Semin Cardiothorac Vasc Anesth 2012;16:123-32.
67. Maltesen R, Buggeskov K, Andersen C, Plovsing R, Wimmer R, et al. Lung Protection Strategies during Cardiopulmonary Bypass
Affect the Composition of Bronchoalveolar Fluid and Lung Tissue in Cardiac Surgery Patients. Metabolites 2018;8:54.
68. Yang Z, Zingarelli B, Szabó C. Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury.
Circulation 2000;101:1019-26.
69. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest
Med 2008;29:617-25.
70. Allen ML, Hoschtitzky JA, Peters MJ, Elliott M, Goldman A, et al. Interleukin-10 and its role in clinical immunoparalysis following
pediatric cardiac surgery. Crit Care Med 2006;34:2658-65.
71. Young RW. Hyperoxia: a review of the risks and benefits in adult cardiac surgery. J Extra Corpor Technol 2012;44:241.
72. Heinrichs J, Lodewyks C, Neilson C, Abou-Setta A, Grocott HP. The impact of hyperoxia on outcomes after cardiac surgery: a
systematic review and narrative synthesis. Can J Anesth/J Can Anesth 2018;65:923-35.
73. Spoelstra‐de Man A, Smit B, Oudemans‐van Straaten H, Smulders Y. Cardiovascular effects of hyperoxia during and after cardiac
surgery. Anaesthesia 2015;70:1307-19.
74. Berry C, Butler P, Myles P. Lung management during cardiopulmonary bypass: is continuous positive airways pressure beneficial? Brit
J Anaesth 1993;71:864-8.
75. Stanley TH, Liu WS, Gentry S. Effects of ventilatory techniques during cardiopulmonary bypass on post-bypass and postoperative
pulmonary compliance and shunt. Anesthesiology 1977;46:391-5.
76. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012;122:2731-40.
77. Fuller BM, Mohr NM, Drewry AM, Carpenter CR. Lower tidal volume at initiation of mechanical ventilation may reduce progression
to acute respiratory distress syndrome: a systematic review. Critical Care 2013;17:R11.
78. Neto AS, Cardoso SO, Manetta JA, Pereira VGM, Espósito DC, et al. Association between use of lung-protective ventilation with lower
tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. Jama 2012;308:1651-9.
79. Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, et al. Lung-protective ventilation with low tidal volumes and the
occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual
patient data analysis. Crit Care Med 2015;43:2155-163.
80. Zupancich E, Paparella D, Turani F, Munch C, Rossi A, et al. Mechanical ventilation affects inflammatory mediators in patients
undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiov Sur 2005;130:378-83.
81. Ng CS, Arifi AA, Wan S, Ho AM, Wan IY, et al. Ventilation during cardiopulmonary bypass: impact on cytokine response and
cardiopulmonary function. Ann Thorac Surg 2008;85:154-62.
82. Beer L, Warszawska JM, Schenk P, Debreceni T, Dworschak M, et al. Intraoperative ventilation strategy during cardiopulmonary bypass
attenuates the release of matrix metalloproteinases and improves oxygenation. J Surg Res 2015;195:294-302.
83. Network ARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute
respiratory distress syndrome. N Engl J Med 2000;342:1301-8.
84. John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass. Interact Cardiov
Thor Sur 2008;7:14-7.
85. Davoudi M, Farhanchi A, Moradi A, Bakhshaei MH, Safarpour G. The effect of low tidal volume ventilation during cardiopulmonary
bypass on postoperative pulmonary function. J Tehran Heart Cent 2010;5:128-31.
86. Gagnon J, Laporta D, Béïque F, Langlois Y, Morin JF. Clinical relevance of ventilation during cardiopulmonary bypass in the prevention
of postoperative lung dysfunction. Perfusion 2010;25:205-10.
87. Beer L, Szerafin T, Mitterbauer A, Debreceni T, Maros T, et al. Continued mechanical ventilation during coronary artery bypass graft
operation attenuates the systemic immune response. Eur J Cardiothorac Surg 2012;44:282-7.