Page 113 - Read Online
P. 113

Page 18 of 20                                                Orekhov et al. Vessel Plus 2019;3:10  I  http://dx.doi.org/10.20517/2574-1209.2019.04

                   cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of
                   atherosclerosis by subclinical endotoxemia. Circ Res 2010;107:56-65.
               104. Suzuki H, Hisamatsu T, Chiba S, Mori K, Kitazume MT, et al. Glycolytic pathway affects differentiation of human monocytes to
                   regulatory macrophages. Immunol Lett 2016:176:18-27.
               105. Egners A, Erdem M, Cramer T. The response of macrophages and neutrophils to hypoxia in the context of cancer and other
                   inflammatory diseases. Mediators Inflamm 2016;2016:2053646.
               106. Takeda N, O’Dea EL, Doedens A, Kim JW, Weidemann A, et al. Differential activation and antagonistic function of HIF-{alpha}
                   isoforms in macrophages are essential for NO homeostasis. Genes Dev 2010;24:491-501.
               107. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, et al. HIF-1alpha expression regulates the bactericidal capacity of
                   phagocytes. J Clin Invest 2005;115:1806-15.
               108. Choe SS, Shin KC, Ka S, Lee YK1, Chun JS, et al. Macrophage HIF-2α ameliorates adipose tissue inflammation and insulin resistance
                   in obesity. Diabetes 2014;63:3359-71.
               109. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell
                   2003;112:645-57.
               110.  Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, et al. Hypoxia-inducible factor 2alpha regulates macrophage function in
                   mouse models of acute and tumor inflammation. J Clin Invest 2010;120:2699-714.
               111.  Novac N, Heinzel T. Nuclear receptors: overview and classification. Curr Drug Targets Inflamm Allergy 2004;3:335-46.
               112.  Xu RB, Liu ZM, Zhao Y. Circadian rhythm of glucocorticoid receptors in human peripheral leukocytes and their reactivity to
                   glucocorticoids. Prog Clin Biol Res 1990;341A:147-56.
               113.  Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c
                   polarization and MerTK induction. J Immunol 2012;189:3508-20.
               114.  Lu J, Cao Q, Zheng D, Sun Y, Wang C, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy
                   in treating chronic kidney disease. Kidney Int 2013;84:745-55.
               115.  Ehrchen J, Steinmüller L, Barczyk K, Tenbrock K, Nacken W, et al. Glucocorticoids induce differentiation of a specifically activated,
                   anti-inflammatory subtype of human monocytes. Blood 2007;109:1265-74.
               116.  Varga G, Ehrchen J, Tsianakas A, Tenbrock K, Rattenholl A, et al. Glucocorticoids induce an activated, anti-inflammatory monocyte
                   subset in mice that resembles myeloid-derived suppressor cells. J Leukoc Biol 2008;84:644-50.
               117.  Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, et al. Glass CK. Molecular determinants of crosstalk between nuclear receptors
                   and toll-like receptors. Cell 2005;122:707-21.
               118.  Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol
                   2010;10:365-76.
               119.  Lucibello FC, Slater EP, Jooss KU, Beato M, Müller R. Mutual transrepression of Fos and the glucocorticoid receptor: involvement of a
                   functional domain in Fos which is absent in FosB. EMBO J 1990;9:2827-34.
               120. Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid,
                   thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 1997;17:2735-44.
               121. Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR. Alternate surfaces of transcriptional coregulator GRIP1 function in different
                   glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci USA 2002;99:16701-6.
               122. Chinenov Y, Gupte R, Dobrovolna J, Flammer JR, Liu B, et al. Role of transcriptional coregulator GRIP1 in the anti-inflammatory
                   actions of glucocorticoids. Proc Natl Acad Sci USA 2012;109:11776-81.
               123. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of
                   macrophage activation. Nature 1988;391:79-82.
               124. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory
                   response genes by PPAR-gamma. Nature 2005;437:759-63.
               125. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol
                   2009;27:451-83.
               126. Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-
                   regulated gene expression in macrophages and dendritic cells. Immunity 2010;33:699-712.
               127. Nagy ZS, Czimmerer Z, Szanto A, Nagy L. Pro-inflammatory cytokines negatively regulate PPARγ mediated gene expression in both
                   human and murine macrophages via multiple mechanisms. Immunobiology 2013;218:1336-44.
               128. Boss M, Kemmerer M, Brüne B, Namgaladze D. FABP4 inhibition suppresses PPARγ activity and VLDL-induced foam cell formation
                   in IL-4-polarized human macrophages. Atherosclerosis 2015;240:424-30.
               129. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, et al. Macrophage-specific PPARgamma controls
                   alternative activation and improves insulin resistance. Nature 2007;447:1116-20.
               130. Guri AJ, Hontecillas R, Ferrer G, Casagran O, Wankhade U, et al. Loss of PPAR gamma in immune cells impairs the ability of abscisic
                   acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into
                   white adipose tissue. J Nutr Biochem 2008;19:216-28.
               131. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.
                   Biochim Biophys Acta 2014;1842:446-62.
               132. Panunti B, Fonseca V. Effects of PPAR gamma agonists on cardiovascular function in obese, non-diabetic patients. Vascul Pharmacol
   108   109   110   111   112   113   114   115   116   117   118