Page 357 - Read Online
P. 357

Page 12 of 13                                                    Ahmed et al. Vessel Plus 2018;2:36  I  http://dx.doi.org/10.20517/2574-1209.2018.51

               64.  Romer LH, Birukov KG, Garcia JG. Focal adhesions: paradigm for a signaling nexus. Circ Res 2006;98:606-16.
               65.  Chorev DS, Volberg T, Livne A, Eisenstein M, Martins B, et al. Conformational states during vinculin unlocking differentially regulate
                   focal adhesion properties. Sci Rep 2018;8:2693.
               66.  Mierke CT. The role of vinculin in the regulation of the mechanical properties of cells. Cell Biochem Biophys 2009;53:115-26.
               67.  Carisey A, Ballestrem C. Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 2011;90:157-63.
               68.  Burke B, Ellenberg J. Remodelling the walls of the nucleus. Nat Rev Mol Cell Biol 2002;3:487-97.
               69.  Warren DT, Zhang Q, Weissberg PL, Shanahan CM. Nesprins: intracellular scaffolds that maintain cell architecture and coordinate cell
                   function? Expert Rev Mol Med 2005;7:1-15.
               70.  Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, et al. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to
                   provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 2006;26:3738-51.
               71.  Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol
                   2006;172:41-53.
               72.  Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, et al. Isolated nuclei adapt to force and reveal a mechanotransduction
                   pathway in the nucleus. Nat Cell Biol 2014;16:376-81.
               73.  Lombardi ML, Jaalouk DE, Shanahan CM, Burke B, Roux KJ, et al. The interaction between nesprins and sun proteins at the nuclear
                   envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem 2011;286:26743-53.
               74.  Stewart RM, Zubek AE, Rosowski KA, Schreiner SM, Horsley V, et al. Nuclear-cytoskeletal linkages facilitate cross talk between the
                   nucleus and intercellular adhesions. J Cell Biol 2015;209:403-18.
               75.  Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D, et al. The LINC-anchored actin cap connects the extracellular
                   milieu to the nucleus for ultrafast mechanotransduction. Sci Rep 2013;3:1087.
               76.  Schwartz C, Fischer M, Mamchaoui K, Bigot A, Lok T, et al. Lamins and nesprin-1 mediate inside-out mechanical coupling in muscle
                   cell precursors through FHOD1. Sci Rep 2017;7:1253.
               77.  Chancellor TJ, Lee J, Thodeti CK, Lele T. Actomyosin tension exerted on the nucleus through nesprin-1 connections influences
                   endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys J 2010;99:115-23.
               78.  Porter LJ, Holt MR, Soong D, Shanahan CM, Warren DT. Prelamin a accumulation attenuates rac1 activity and increases the intrinsic
                   migrational persistence of aged vascular smooth muscle cells. Cells 2016; doi: 10.3390/cells5040041.
               79.  Thakar K, May CK, Rogers A, Carroll CW. Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA. Mol
                   Biol Cell 2017;28:182-91.
               80.  Alonso JL, Goldmann WH. Cellular mechanotransduction. AIMS Biophys 2016;3:50-62.
               81.  Belaadi N, Aureille J, Guilluy C. Under pressure: mechanical stress management in the nucleus. Cells 2016; doi: 10.3390/cells5020027.
               82.  Wrighton KH. Cell adhesion: the ‘ins’ and ‘outs’ of integrin signalling. Nat Rev Mol Cell Biol 2013;14:752.
               83.  Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH. The effect of pressure-induced mechanical stretch on vascular wall differential
                   gene expression. J Vasc Res 2012;49:463-78.
               84.  Ducret T, El Arrouchi J, Courtois A, Quignard JF, Marthan R, et al. Stretch-activated channels in pulmonary arterial smooth muscle cells
                   from normoxic and chronically hypoxic rats. Cell calcium 2010;48:251-9.
               85.  Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ. Visualization of Ca2+ entry through single stretch-activated cation channels. Proc
                   Natl Acad Sci U S A 2002;99:6404-9.
               86.  Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. Central artery stiffness in hypertension and aging: a problem with
                   cause and consequence. Circ Res 2016;118:379-81.
               87.  Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol 2015;209:13-22.
               88.  Kher N, Marsh JD. Pathobiology of atherosclerosis--a brief review. Semin Thromb Hemost 2004;30:665-72.
               89.  Tracqui P, Broisat A, Toczek J, Mesnier N, Ohayon J, et al. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force
                   microscopy. J Struct Biol 2011;174:115-23.
               90.  Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016;118:692-702.
               91.  Hytönen VP, Wehrle-Haller B. Mechanosensing in cell-matrix adhesions - converting tension into chemical signals. Exp Cell Res
                   2016;343:35-41.
               92.  Timraz SBH, Rezgui R, Boularaoui SM, Teo JCM. Stiffness of extracellular matrix components modulates the phenotype of human
                   smooth muscle cells in vitro and allows for the control of properties of engineered tissues. Procedia Eng 2015;110:29-36.
               93.  Sazonova OV, Isenberg BC, Herrmann J, Lee KL, Purwada A, et al. Extracellular matrix presentation modulates vascular smooth
                   muscle cell mechanotransduction. Matrix Biol 2015;41:36-43.
               94.  McDaniel DP, Shaw GA, Elliott JT, Bhadriraju K, Meuse C, et al. The stiffness of collagen fibrils influences vascular smooth muscle
                   cell phenotype. Biophys J 2007;92:1759-69.
               95.  Chaterji S, Kim P, Choe SH, Tsui JH, Lam CH, et al. Synergistic effects of matrix nanotopography and stiffness on vascular smooth
                   muscle cell function. Tissue Eng Part A 2014;20:2115-26.
               96.  Seawright JW, Sreenivasappa H, Gibbs HC, Padgham S, Shin SY, et al. Vascular smooth muscle contractile function declines with age
                   in skeletal muscle feed arteries. Front Physiol 2018;9:856.
               97.  Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet 2015;6:112.
               98.  Isenberg BC, Dimilla PA, Walker M, Kim S, Wong JY. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient
                   strength. Biophys J 2009;97:1313-22.
   352   353   354   355   356   357   358   359   360   361   362