Page 302 - Read Online
P. 302
Stenina-Adognravi et al. Vessel Plus 2018;2:30 I http://dx.doi.org/10.20517/2574-1209.2018.40 Page 11 of 14
their tumorigenesis. Proc Natl Acad Sci U S A 1995;92:6788-92.
64. Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol 2014;37:83-
91.
65. Lopez-Dee Z, Pidcock K, Gutierrez LS. Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm 2011;2011:296069.
66. Kirsch T, Woywodt A, Klose J, Wyss K, Beese M, et al. Endothelial-derived thrombospondin-1 promotes macrophage recruitment and
apoptotic cell clearance. J Cell Mol Med 2010;14:1922-34.
67. Tuszynski GP, Rothman V, Murphy A, Siegler K, Smith L, et al. Thrombospondin promotes cell-substratum adhesion. Science
1987;236:1570-3.
68. Chandrasekaran S, Guo NH, Rodrigues RG, Kaiser J, Roberts DD. Pro-adhesive and chemotactic activities of thrombospondin-1
for breast carcinoma cells are mediated by α3β1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem
1999;274:11408-16.
69. Albo D, Rothman VL, Roberts DD, Tuszynski GP. Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through
the urokinase plasminogen activator receptor. Br J Cancer 2000;83:298-306.
70. Yee KO, Connolly CM, Duquette M, Kazerounian S, Washington R, et al. The effect of thrombospondin-1 on breast cancer metastasis.
Breast Cancer Res Treat 2009;114:85-96.
71. Pal SK, Nguyen CT, Morita KI, Miki Y, Kayamori K, et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of
oral squamous cell carcinoma. J Oral Pathol Med 2016;45:730-9.
72. Horiguchi H, Yamagata S, Rong Qian Z, Kagawa S, Sakashita N. Thrombospondin-1 is highly expressed in desmoplastic components
of invasive ductal carcinoma of the breast and associated with lymph node metastasis. J Med Invest 2013;60:91-6.
73. Borsotti P, Ghilardi C, Ostano P, Silini A, Dossi R, et al. Thrombospondin-1 is part of a slug-independent motility and metastatic pro-
gram in cutaneous melanoma, in association with VEGFR-1 and FGF-2. Pigment Cell Melanoma Res 2015;28:73-81.
74. Filleur S, Volpert OV, Degeorges A, Voland C, Reiher F, et al. In vivo mechanisms by which tumors producing thrombospondin 1 by-
pass its inhibitory effects. Genes Dev 2001;15:1373-82.
75. Mirochnik Y, Kwiatek A, Volpert OV. Thrombospondin and apoptosis: molecular mechanisms and use for design of complementation
treatments. Curr Drug Targets 2008;9:851-62.
76. Rejniak KA. Circulating tumor cells: when a solid tumor meets a fluid microenvironment. Adv Exp Med Biol 2016;936:93-106.
77. Houghton AN, Guevara-Patiño JA. Immune recognition of self in immunity against cancer. J Clin Invest 2004;114:468-71.
78. Disis ML. Immune regulation of cancer. J Clin Oncol 2010;28:4531-8.
79. Jung H, Hsiung B, Pestal K, Procyk E, Raulet DH. RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors,
which control cell cycle entry. J Exp Med 2012;209:2409-22.
80. Yamauchi M, Imajoh-Ohmi S, Shibuya M. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell
cycle. Cancer Sci 2007;98:1491-7.
81. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1.
Science 1994;265:1582-4.
82. Wu Y, Zhou BP. Inflammation: a driving force speeds cancer metastasis. Cell Cycle 2009;8:3267-73.
83. Coussens LM1, Werb Z. Inflammation and cancer. Nature 2002;420:860-7.
84. Ryu TY, Park J, Scherer PE. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J 2014;38:330-6.
85. Pisani P. Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem 2008;114:63-70.
86. Joslin EP, Lombard HL, Burrows RE, Manning MD. Diabetes and cancer. N Engl J Med 1959;260:486-8.
87. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin
2010;60:207-21.
88. Noto H, Tsujimoto T, Sasazuki T, Noda M. Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review
and meta-analysis. Endocr Pract 2011;17:616-28.
89. Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, et al. Long-term all-cause mortality in cancer patients with preexisting diabetes
mellitus: a systematic review and meta-analysis. JAMA 2008;300:2754-64.
90. Larsson SC, Bergkvist L, Wolk A. Glycemic load, glycemic index and breast cancer risk in a prospective cohort of Swedish women. Int
J Cancer 2009;125:153-7.
91. Dong JY, Qin LQ. Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies. Breast
Cancer Res Treat 126:287-94.
92. Sieri S, Pala V, Brighenti F, Agnoli C, Grioni S. High glycemic diet and breast cancer occurrence in the Italian EPIC cohort. Nutr Metab
Cardiovasc Dis 2013;23:628-34.
93. Turati F, Galeone C, Gandini S, Augustin LS, Jenkins DJ, et al. High glycemic index and glycemic load are associated with moderately
increased cancer risk. Mol Nutr Food Res 2015;59:1384-94.
94. Mullie P, Koechlin A, Boniol M, Autier P, Boyle P. Relation between breast cancer and high glycemic index or glycemic load: a meta-
analysis of prospective cohort studies. Crit Rev Food Sci Nutr 2016;5:152-9.
95. Melkonian SC, Daniel CR, Ye Y, Pierzynski JA, Roth JA, et al. Glycemic index, glycemic load, and lung cancer risk in non-hispanic
whites. Cancer Epidemiol Biomarkers Prev 2016;25:532-9.
96. Hu J, La Vecchia C, Augustin LS, Negri E, de Groh M, et al. Glycemic index, glycemic load and cancer risk. Ann Oncol 2013;24:245-
51.
97. Hardin J, Cheng I, Witte JS. Impact of consumption of vegetable, fruit, grain, and high glycemic index foods on aggressive prostate