Page 45 - Read Online
P. 45
Rigamonti et al. Vessel Plus 2021;5:47 https://dx.doi.org/10.20517/2574-1209.2021.65 Page 7 of 8
52. Zhang J, Clatterbuck RE, Rigamonti D, Dietz HC. Cloning of the murine Krit1 cDNA reveals novel mammalian 5' coding exons.
Genomics 2000;70:392-5. DOI PubMed
53. Zhang J, Clatterbuck RE, Rigamonti D, Chang DD, Dietz HC. Interaction between krit1 and icap1alpha infers perturbation of integrin
beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet 2001;10:2953-60. DOI
PubMed
54. Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE. Interaction between krit1 and malcavernin: implications for the pathogenesis of
cerebral cavernous malformations. Neurosurgery 2007;60:353-9; discussion 359. DOI PubMed
55. Zhang J, Basu S, Rigamonti D, Dietz HC, Clatterbuck RE. Krit1 modulates beta 1-integrin-mediated endothelial cell proliferation.
Neurosurgery 2008;63:571-8; discussion 578. DOI PubMed
56. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 assures microvascular integrity during angiogenesis. Trans Stroke Res 2010;1:146-53.
DOI PubMed PMC
57. Zhang J, Carr CW, Rigamonti D, Badr A. Genome-wide linkage scan maps ETINPH gene to chromosome 19q12-13.31. Hum Hered
2010;69:262-7. DOI PubMed
58. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 2011;48:130-40.
DOI PubMed PMC
59. Bergametti F, Denier C, Labauge P, et al; Société Française de Neurochirurgie. Mutations within the programmed cell death 10 gene
cause cerebral cavernous malformations. Am J Hum Genet 2005;76:42-51. DOI PubMed PMC
60. Denier C, Labauge P, Bergametti F, et al; Société Française de Neurochirurgie. Genotype-phenotype correlations in cerebral cavernous
malformations patients. Ann Neurol 2006;60:550-6. DOI PubMed
61. Spiegler S, Rath M, Paperlein C, Felbor U. Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses,
and genetic counselling. Mol Syndromol 2018;9:60-9. DOI PubMed PMC
®
62. Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database (HGMD ): optimizing its use in a clinical diagnostic or
research setting. Hum Genet 2020;139:1197-207. DOI PubMed PMC
63. Corr M, Lerman I, Keubel JM, et al. Decreased Krev interaction-trapped 1 expression leads to increased vascular permeability and
modifies inflammatory responses in vivo. Arterioscler Thromb Vasc Biol 2012;32:2702-10. DOI PubMed PMC
64. Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci
2014;127:701-7. DOI PubMed PMC
65. Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell
Mol Life Sci 2014;71:1881-92. DOI PubMed PMC
66. Draheim KM, Li X, Zhang R, et al. CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network
formation. J Cell Biol 2015;208:987-1001. DOI PubMed PMC
67. Shenkar R, Shi C, Rebeiz T, et al. Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10
mutations. Genet Med 2015;17:188-96. DOI PubMed PMC
68. Jenny Zhou H, Qin L, Zhang H, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral
cavernous malformation. Nat Med 2016;22:1033-42. DOI PubMed PMC
69. Vos IJ, Vreeburg M, Koek GH, van Steensel MA. Review of familial cerebral cavernous malformations and report of seven additional
families. Am J Med Genet A 2017;173:338-51. DOI PubMed
70. Abou-Fadel J, Qu Y, Gonzalez EM, Smith M, Zhang J. Emerging roles of CCM genes during tumorigenesis with potential application
as novel biomarkers across major types of cancers. Oncol Rep 2020;43:1945-63. DOI PubMed PMC
71. Orsenigo F, Conze LL, Jauhiainen S, et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell
resolution. Elife 2020;9:e61413. DOI PubMed PMC
72. Peng W, Wu X, Feng D, et al. Cerebral cavernous malformation 3 relieves subarachnoid hemorrhage-induced neuroinflammation in
rats through inhibiting NF-kB signaling pathway. Brain Res Bull 2020;160:74-84. DOI PubMed
73. Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biol 2020;10:200263. DOI
PubMed PMC
74. Wei S, Li Y, Polster SP, Weber CR, Awad IA, Shen L. Cerebral cavernous malformation proteins in barrier maintenance and
regulation. Int J Mol Sci 2020;21:675. DOI PubMed PMC
75. Ricci C, Cerase A, Riolo G, Manasse G, Battistini S. KRIT1 gene in patients with cerebral cavernous malformations: clinical features
and molecular characterization of novel variants. J Mol Neurosci 2021. DOI PubMed
76. Riolo G, Ricci C, Battistini S. Molecular genetic features of cerebral cavernous malformations (CCM) Patients: an overall view from
genes to endothelial cells. Cells 2021;10:704. DOI PubMed PMC
77. Cuttano R, Rudini N, Bravi L, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous
malformations. EMBO Mol Med 2016;8:6-24. DOI PubMed PMC
78. Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus 2018;2:21. DOI PubMed PMC
79. Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC).
Heliyon 2019;5:e02899. DOI PubMed PMC
80. Jiang X, Padarti A, Qu Y, et al. Alternatively spliced isoforms reveal a novel type of PTB domain in CCM2 protein. Sci Rep
2019;9:15808. DOI PubMed PMC
81. Awad IA, Polster SP. Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 2019;131:1-13. DOI PubMed PMC
82. De Luca E, Pedone D, Moglianetti M, et al. Multifunctional platinum@BSA-rapamycin nanocarriers for the combinatorial therapy of
cerebral cavernous malformation. ACS Omega 2018;3:15389-98. DOI PubMed PMC