Page 45 - Read Online
P. 45

Rigamonti et al. Vessel Plus 2021;5:47  https://dx.doi.org/10.20517/2574-1209.2021.65  Page 7 of 8

               52.      Zhang J, Clatterbuck RE, Rigamonti D, Dietz HC. Cloning of the murine Krit1 cDNA reveals novel mammalian 5' coding exons.
                   Genomics 2000;70:392-5.  DOI  PubMed
               53.      Zhang J, Clatterbuck RE, Rigamonti D, Chang DD, Dietz HC. Interaction between krit1 and icap1alpha infers perturbation of integrin
                   beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet 2001;10:2953-60.  DOI
                   PubMed
               54.      Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE. Interaction between krit1 and malcavernin: implications for the pathogenesis of
                   cerebral cavernous malformations. Neurosurgery 2007;60:353-9; discussion 359.  DOI  PubMed
               55.      Zhang J, Basu S, Rigamonti D, Dietz HC, Clatterbuck RE. Krit1 modulates beta 1-integrin-mediated endothelial cell proliferation.
                   Neurosurgery 2008;63:571-8; discussion 578.  DOI  PubMed
               56.      Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 assures microvascular integrity during angiogenesis. Trans Stroke Res 2010;1:146-53.
                   DOI  PubMed  PMC
               57.      Zhang J, Carr CW, Rigamonti D, Badr A. Genome-wide linkage scan maps ETINPH gene to chromosome 19q12-13.31. Hum Hered
                   2010;69:262-7.  DOI  PubMed
               58.      Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 2011;48:130-40.
                   DOI  PubMed  PMC
               59.      Bergametti F, Denier C, Labauge P, et al; Société Française de Neurochirurgie. Mutations within the programmed cell death 10 gene
                   cause cerebral cavernous malformations. Am J Hum Genet 2005;76:42-51.  DOI  PubMed  PMC
               60.      Denier C, Labauge P, Bergametti F, et al; Société Française de Neurochirurgie. Genotype-phenotype correlations in cerebral cavernous
                   malformations patients. Ann Neurol 2006;60:550-6.  DOI  PubMed
               61.      Spiegler S, Rath M, Paperlein C, Felbor U. Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses,
                   and genetic counselling. Mol Syndromol 2018;9:60-9.  DOI  PubMed  PMC
                                                                          ®
               62.      Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database (HGMD ): optimizing its use in a clinical diagnostic or
                   research setting. Hum Genet 2020;139:1197-207.  DOI  PubMed  PMC
               63.      Corr M, Lerman I, Keubel JM, et al. Decreased Krev interaction-trapped 1 expression leads to increased vascular permeability and
                   modifies inflammatory responses in vivo. Arterioscler Thromb Vasc Biol 2012;32:2702-10.  DOI  PubMed  PMC
               64.      Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance.  J Cell Sci
                   2014;127:701-7.  DOI  PubMed  PMC
               65.      Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell
                   Mol Life Sci 2014;71:1881-92.  DOI  PubMed  PMC
               66.      Draheim KM, Li X, Zhang R, et al. CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network
                   formation. J Cell Biol 2015;208:987-1001.  DOI  PubMed  PMC
               67.      Shenkar R, Shi C, Rebeiz T, et al. Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10
                   mutations. Genet Med 2015;17:188-96.  DOI  PubMed  PMC
               68.      Jenny Zhou H, Qin L, Zhang H, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral
                   cavernous malformation. Nat Med 2016;22:1033-42.  DOI  PubMed  PMC
               69.      Vos IJ, Vreeburg M, Koek GH, van Steensel MA. Review of familial cerebral cavernous malformations and report of seven additional
                   families. Am J Med Genet A 2017;173:338-51.  DOI  PubMed
               70.      Abou-Fadel J, Qu Y, Gonzalez EM, Smith M, Zhang J. Emerging roles of CCM genes during tumorigenesis with potential application
                   as novel biomarkers across major types of cancers. Oncol Rep 2020;43:1945-63.  DOI  PubMed  PMC
               71.      Orsenigo F, Conze LL, Jauhiainen S, et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell
                   resolution. Elife 2020;9:e61413.  DOI  PubMed  PMC
               72.      Peng W, Wu X, Feng D, et al. Cerebral cavernous malformation 3 relieves subarachnoid hemorrhage-induced neuroinflammation in
                   rats through inhibiting NF-kB signaling pathway. Brain Res Bull 2020;160:74-84.  DOI  PubMed
               73.      Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biol 2020;10:200263.  DOI
                   PubMed  PMC
               74.      Wei S, Li Y, Polster SP, Weber CR, Awad IA, Shen L. Cerebral cavernous malformation proteins in barrier maintenance and
                   regulation. Int J Mol Sci 2020;21:675.  DOI  PubMed  PMC
               75.      Ricci C, Cerase A, Riolo G, Manasse G, Battistini S. KRIT1 gene in patients with cerebral cavernous malformations: clinical features
                   and molecular characterization of novel variants. J Mol Neurosci 2021.  DOI  PubMed
               76.      Riolo G, Ricci C, Battistini S. Molecular genetic features of cerebral cavernous malformations (CCM) Patients: an overall view from
                   genes to endothelial cells. Cells 2021;10:704.  DOI  PubMed  PMC
               77.      Cuttano R, Rudini N, Bravi L, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous
                   malformations. EMBO Mol Med 2016;8:6-24.  DOI  PubMed  PMC
               78.      Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus 2018;2:21.  DOI  PubMed  PMC
               79.      Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC).
                   Heliyon 2019;5:e02899.  DOI  PubMed  PMC
               80.      Jiang X, Padarti A, Qu Y, et al. Alternatively spliced isoforms reveal a novel type of PTB domain in CCM2 protein. Sci Rep
                   2019;9:15808.  DOI  PubMed  PMC
               81.      Awad IA, Polster SP. Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 2019;131:1-13.  DOI  PubMed  PMC
               82.      De Luca E, Pedone D, Moglianetti M, et al. Multifunctional platinum@BSA-rapamycin nanocarriers for the combinatorial therapy of
                   cerebral cavernous malformation. ACS Omega 2018;3:15389-98.  DOI  PubMed  PMC
   40   41   42   43   44   45   46   47   48   49   50