Page 49 - Read Online
P. 49
Strassheim et al. Vessel Plus 2018;2:29 I http://dx.doi.org/10.20517/2574-1209.2018.44 Page 21 of 22
attenuates cardiac remodelling through the MEK-ERK1/2 signalling pathway. Basic Res Cardiol 2016;111:47.
217. Xiao Y, Liu Y, Liu J, Kang YJ. The association between myocardial fibrosis and depressed capillary density in rat model of left
ventricular hypertrophy. Cardiovasc Toxicol 2018;18:304-1.
218. Jabs M, Rose AJ, Lehmann LH, Taylor J, Moll I, Sijmonsma TP, Herberich SE, Sauer SW, Poschet G, Federico G, Mogler C, Weis
EM, Augustin HG, Yan M, Gretz N, Schmid RM, Adams RH, Grone HJ, Hell R, Okun JG, Backs J, Nawroth PP, Herzig S, Fischer A.
Inhibition of endothelial notch signaling impairs fatty acid transport and leads to metabolic and vascular remodeling of the adult heart.
Circulation 2018;137:2592-608.
219. Kumar R, Mickael C, Kassa B, Gebreab L, Robinson JC, Koyanagi DE, Sanders L, Barthel L, Meadows C, Fox D, Irwin D, Li M,
McKeon BA, Riddle S, Dale Brown R, Morgan LE, Evans CM, Hernandez-Saavedra D, Bandeira A, Maloney JP, Bull TM, Janssen
WJ, Stenmark KR, Tuder RM, Graham BB. TGF-beta activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and
hypoxia-induced pulmonary hypertension. Nat Commun 2017;8:15494.
220. Gong H, An S, Sassmann A, Liu M, Mastej V, Mittal M, Zhang W, Hong Z, Offermanns S, Rehman J, Malik AB. PAR1 scaffolds
TGFbetaRII to downregulate TGF-beta signaling and activate ESC differentiation to endothelial cells. Stem Cell Reports 2016;7:1050-
8.
221. Zhou L, Chen H, Mao X, Qi H, Baker PN, Zhang H. G-protein-coupled receptor 30 mediates the effects of estrogen on endothelial cell
tube formation in vitro. Int J Mol Med 2017;39:1461-7.
222. Li Z, Cheng L, Liang H, Duan W, Hu J, Zhi W, Yang J, Liu Z, Zhao M, Liu J. GPER inhibits diabetes-mediated RhoA activation to
prevent vascular endothelial dysfunction. Eur J Cell Biol 2016;95:100-13.
223. Glembotski CC, Irons CE, Krown KA, Murray SF, Sprenkle AB, Sei CA. Myocardial alpha-thrombin receptor activation induces
hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem 1993;268:20646-52.
224. Ide J, Aoki T, Ishivata S, Glusa E, Strukova SM. Proteinase-activated receptor agonists stimulate the increase in intracellular Ca2+ in
cardiomyocytes and proliferation of cardiac fibroblasts from chick embryos. Bull Exp Biol Med 2007;144:760-3.
225. Snead AN, Insel PA. Defining the cellular repertoire of GPCRs identifies a profibrotic role for the most highly expressed receptor,
protease-activated receptor 1, in cardiac fibroblasts. FASEB J 2012;26:4540-7.
226. Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M, Ide T, Suzuki K, Inoue K, Nagao T, Kurose H. P2Y6 receptor-
Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J 2008;27:3104-15.
227. Samuel CS, Du XJ, Bathgate RA, Summers RJ. ‘Relaxin’ the stiffened heart and arteries: the therapeutic potential for relaxin in the
treatment of cardiovascular disease. Pharmacol Ther 2006;112:529-52.
228. Chen Y, Yang S, Yao W, Zhu H, Xu X, Meng G, Zhang W. Prostacyclin analogue beraprost inhibits cardiac fibroblast proliferation
depending on prostacyclin receptor activation through a TGF beta-Smad signal pathway. PLoS One 2014;9:e98483.
229. Salvi V, Sozio F, Sozzani S, Del Prete A. Role of atypical chemokine receptors in microglial activation and polarization. Front Aging
Neurosci 2017;9:148.
230. Pullamsetti SS, Savai R. Macrophage regulation during vascular remodeling: implications for pulmonary hypertension therapy. Am J
Respir Cell Mol Biol 2017;56:556-8.
231. Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y, Hao H, Tang K, Yi P, Liu M, Miao S, Ye D. Pleiotropic regulation of macrophage
polarization and tumorigenesis by formyl peptide receptor-2. Oncogene 2011;30:3887-99.
232. Csoka B, Selmeczy Z, Koscso B, Nemeth ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM, Jr., Gause WC, Leibovich SJ, Hasko
G. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 2012;26:376-86.
233. Lin HH, Stacey M. G Protein-coupled receptors in macrophages. Microbiol Spectr 2016;4.
234. Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S. Pivotal advance: tumor-mediated induction of myeloid-derived suppressor
cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells. J Leukoc Biol 2010;88:839-48.
235. Kruger A, Mayer A, Roch T, Schulz C, Lendlein A, Jung F. Angiogenically stimulated alternative monocytes maintain their pro-
angiogenic and non-inflammatory phenotype in long-term co-cultures with HUVEC. Clin Hemorheol Microcirc 2014;58:229-40.
236. Presta M, Andres G, Leali D, Dell’Era P, Ronca R. Inflammatory cells and chemokines sustain FGF2-induced angiogenesis. Eur
Cytokine Netw 2009;20:39-50.
237. Sidibe A, Ropraz P, Jemelin S, Emre Y, Poittevin M, Pocard M, Bradfield PF, Imhof BA. Angiogenic factor-driven inflammation
promotes extravasation of human proangiogenic monocytes to tumours. Nat Commun 2018;9:355.
238. Dopheide JF, Geissler P, Rubrech J, Trumpp A, Zeller GC, Bock K, Dorweiler B, Dunschede F, Munzel T, Radsak MP, Espinola-Klein C.
Inflammation is associated with a reduced number of pro-angiogenic Tie-2 monocytes and endothelial progenitor cells in patients with
critical limb ischemia. Angiogenesis 2016;19:67-78.
239. Welihinda AA, Amento EP. Positive allosteric modulation of the adenosine A2a receptor attenuates inflammation. J Inflamm (Lond)
2014;11:37.
240. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D’Acquisto F, Buckingham JC, Perretti M, Flower RJ. Anti-
inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental
inflammation. J Immunol 2010;184:2611-9.
241. Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS, Gebb S, Jones PL. Development of occlusive neointimal lesions in
distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension. Circulation
2005;111:2988-96.
242. Cha SA, Park BM, Kim SH. Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. Korean J
Physiol Pharmacol 2018;22:447-56.