Page 99 - Read Online
P. 99
Lu et al. Soft Sci 2024;4:36 https://dx.doi.org/10.20517/ss.2024.29 Page 19 of 20
Nat Biomed Eng 2018;2:165-72. DOI PubMed
29. Dagdeviren C, Shi Y, Joe P, et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue
biomechanics. Nat Mater 2015;14:728-36. DOI PubMed
30. Kennedy KM, Chin L, McLaughlin RA, et al. Quantitative micro-elastography: imaging of tissue elasticity using compression optical
coherence elastography. Sci Rep 2015;5:15538. DOI PubMed PMC
31. Kim J, Salvatore GA, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.
Sci Adv 2016;2:e1600418. DOI PubMed PMC
32. Pirnat G, Marinčič M, Ravnik M, Humar M. Quantifying local stiffness and forces in soft biological tissues using droplet optical
microcavities. Proc Natl Acad Sci U S A 2024;121:e2314884121. DOI PubMed PMC
33. Hsu CK, Lin HH, Harn HI, Hughes MW, Tang MJ, Yang CC. Mechanical forces in skin disorders. J Dermatol Sci 2018;90:232-40.
DOI PubMed
34. Janmey PA, Miller RT. Mechanisms of mechanical signaling in development and disease. J Cell Sci 2011;124:9-18. DOI PubMed
PMC
35. Kuzum D, Takano H, Shim E, et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and
neuroimaging. Nat Commun 2014;5:5259. DOI PubMed PMC
36. Kim GH, Kim K, Nam H, et al. CNT-Au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sensor
Actuat B Chem 2017;252:152-8. DOI
37. Fang H, Yu KJ, Gloschat C, et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac
electrophysiology. Nat Biomed Eng 2017;1:0038. DOI PubMed PMC
38. Viventi J, Kim DH, Moss JD, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci
Transl Med 2010;2:24ra22. DOI PubMed PMC
39. Viventi J, Kim DH, Vigeland L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity
in vivo. Nat Neurosci 2011;14:1599-605. DOI PubMed PMC
40. Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023;7:405-23.
DOI PubMed PMC
41. Li W, Torres D, Díaz R, et al. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for
flexible electronics. Nat Commun 2017;8:15310. DOI PubMed PMC
42. Turner BL, Senevirathne S, Kilgour K, et al. Ultrasound-powered implants: a critical review of piezoelectric material selection and
applications. Adv Healthc Mater 2021;10:e2100986. DOI PubMed
43. Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol 2021;18:7-21. DOI
PubMed
44. Moin A, Zhou A, Rahimi A, et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture
recognition. Nat Electron 2021;4:54-63. DOI
45. Lee K, Ni X, Lee JY, et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at
the suprasternal notch. Nat Biomed Eng 2020;4:148-58. DOI PubMed PMC
46. Song H, Luo G, Ji Z, et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network
materials. Sci Adv 2022;8:eabm3785. DOI PubMed PMC
47. Kim T, Shin Y, Kang K, et al. Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech
interfaces. Nat Commun 2022;13:5815. DOI PubMed PMC
48. Lopez CAS. Advanced materials towards flexible printable bioelectronics, bioenergy devices and medical devices. 2021. Available
from: https://www.proquest.com/openview/d150170f25f57f6a15d5c794a2ce5435/1?pq-origsite=gscholar&cbl=18750&diss=y. [Last
accessed on 19 Oct 2024].
49. Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and
device applications. Chem Soc Rev 2019;48:1566-95. DOI PubMed
50. Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An emerging era: conformable ultrasound electronics. Adv Mater 2024;36:e2307664.
DOI PubMed
51. Lin M, Hu H, Zhou S, Xu S. Soft wearable devices for deep-tissue sensing. Nat Rev Mater 2022;7:850-69. DOI
52. Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat
Biomed Eng 2021;5:749-58. DOI PubMed
53. Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 1985;11:625-41. DOI
PubMed
54. Nayeem MOG, Lee S, Jin H, et al. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-
term heart monitoring. Proc Natl Acad Sci U S A 2020;117:7063-70. DOI PubMed PMC
55. Cui Z, Wang W, Guo L, et al. Haptically quantifying Young’s modulus of soft materials using a self-locked stretchable strain sensor.
Adv Mater 2022;34:e2104078. DOI PubMed
56. Fan X, Forsberg F, Smith AD, et al. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical
accelerometers. Nat Electron 2019;2:394-404. DOI
57. Cai P, Hu B, Leow WR, et al. Biomechano-interactive materials and interfaces. Adv Mater 2018;30:e1800572. DOI PubMed
58. Lee GH, Moon H, Kim H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater

