Page 99 - Read Online
P. 99

Lu et al. Soft Sci 2024;4:36  https://dx.doi.org/10.20517/ss.2024.29            Page 19 of 20

                   Nat Biomed Eng 2018;2:165-72.  DOI  PubMed
               29.      Dagdeviren C, Shi Y, Joe P, et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue
                   biomechanics. Nat Mater 2015;14:728-36.  DOI  PubMed
               30.      Kennedy KM, Chin L, McLaughlin RA, et al. Quantitative micro-elastography: imaging of tissue elasticity using compression optical
                   coherence elastography. Sci Rep 2015;5:15538.  DOI  PubMed  PMC
               31.      Kim J, Salvatore GA, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.
                   Sci Adv 2016;2:e1600418.  DOI  PubMed  PMC
               32.      Pirnat G, Marinčič M, Ravnik M, Humar M. Quantifying local stiffness and forces in soft biological tissues using droplet optical
                   microcavities. Proc Natl Acad Sci U S A 2024;121:e2314884121.  DOI  PubMed  PMC
               33.      Hsu CK, Lin HH, Harn HI, Hughes MW, Tang MJ, Yang CC. Mechanical forces in skin disorders. J Dermatol Sci 2018;90:232-40.
                   DOI  PubMed
               34.      Janmey PA, Miller RT. Mechanisms of mechanical signaling in development and disease. J Cell Sci 2011;124:9-18.  DOI  PubMed
                   PMC
               35.      Kuzum D, Takano H, Shim E, et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and
                   neuroimaging. Nat Commun 2014;5:5259.  DOI  PubMed  PMC
               36.      Kim GH, Kim K, Nam H, et al. CNT-Au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sensor
                   Actuat B Chem 2017;252:152-8.  DOI
               37.      Fang H, Yu KJ, Gloschat C, et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac
                   electrophysiology. Nat Biomed Eng 2017;1:0038.  DOI  PubMed  PMC
               38.      Viventi J, Kim DH, Moss JD, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci
                   Transl Med 2010;2:24ra22.  DOI  PubMed  PMC
               39.      Viventi J, Kim DH, Vigeland L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity
                   in vivo. Nat Neurosci 2011;14:1599-605.  DOI  PubMed  PMC
               40.      Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023;7:405-23.
                   DOI  PubMed  PMC
               41.      Li W, Torres D, Díaz R, et al. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for
                   flexible electronics. Nat Commun 2017;8:15310.  DOI  PubMed  PMC
               42.      Turner BL, Senevirathne S, Kilgour K, et al. Ultrasound-powered implants: a critical review of piezoelectric material selection and
                   applications. Adv Healthc Mater 2021;10:e2100986.  DOI  PubMed
               43.      Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol 2021;18:7-21.  DOI
                   PubMed
               44.      Moin A, Zhou A, Rahimi A, et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture
                   recognition. Nat Electron 2021;4:54-63.  DOI
               45.      Lee K, Ni X, Lee JY, et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at
                   the suprasternal notch. Nat Biomed Eng 2020;4:148-58.  DOI  PubMed  PMC
               46.      Song H, Luo G, Ji Z, et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network
                   materials. Sci Adv 2022;8:eabm3785.  DOI  PubMed  PMC
               47.      Kim T, Shin Y, Kang K, et al. Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech
                   interfaces. Nat Commun 2022;13:5815.  DOI  PubMed  PMC
               48.      Lopez CAS. Advanced materials towards flexible printable bioelectronics, bioenergy devices and medical devices. 2021. Available
                   from: https://www.proquest.com/openview/d150170f25f57f6a15d5c794a2ce5435/1?pq-origsite=gscholar&cbl=18750&diss=y. [Last
                   accessed on 19 Oct 2024].
               49.      Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and
                   device applications. Chem Soc Rev 2019;48:1566-95.  DOI  PubMed
               50.      Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An emerging era: conformable ultrasound electronics. Adv Mater 2024;36:e2307664.
                   DOI  PubMed
               51.      Lin M, Hu H, Zhou S, Xu S. Soft wearable devices for deep-tissue sensing. Nat Rev Mater 2022;7:850-69.  DOI
               52.      Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat
                   Biomed Eng 2021;5:749-58.  DOI  PubMed
               53.      Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 1985;11:625-41.  DOI
                   PubMed
               54.      Nayeem MOG, Lee S, Jin H, et al. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-
                   term heart monitoring. Proc Natl Acad Sci U S A 2020;117:7063-70.  DOI  PubMed  PMC
               55.      Cui Z, Wang W, Guo L, et al. Haptically quantifying Young’s modulus of soft materials using a self-locked stretchable strain sensor.
                   Adv Mater 2022;34:e2104078.  DOI  PubMed
               56.      Fan X, Forsberg F, Smith AD, et al. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical
                   accelerometers. Nat Electron 2019;2:394-404.  DOI
               57.      Cai P, Hu B, Leow WR, et al. Biomechano-interactive materials and interfaces. Adv Mater 2018;30:e1800572.  DOI  PubMed
               58.      Lee GH, Moon H, Kim H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater
   94   95   96   97   98   99   100   101   102   103   104