Page 84 - Read Online
P. 84
Aguiar. Rare Dis Orphan Drugs J 2024;3:13 https://dx.doi.org/10.20517/rdodj.2023.56 Page 25 of 29
131. Moon JC, Sachdev B, Elkington AG, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease.
Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003;24:2151-5. DOI
132. Hoey ET, Neil-Gallagher E. Utility of gadolinium enhanced cardiovascular MRI to differentiate Fabry’s disease from other causes of
hypertrophic cardiomyopathy. Postgrad Med J 2012;88:731-2. DOI PubMed
133. Kozor R, Grieve SM, Tchan MC, et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular
MR. Heart 2016;102:298-302. DOI
134. De Cobelli F, Esposito A, Belloni E, et al. Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric
hypertrophic cardiomyopathy. AJR Am J Roentgenol 2009;192:W97-102. DOI
135. Weidemann F, Breunig F, Beer M, et al. The variation of morphological and functional cardiac manifestation in Fabry disease:
potential implications for the time course of the disease. Eur Heart J 2005;26:1221-7. DOI
136. Vijapurapu R, Nordin S, Baig S, et al. Global longitudinal strain, myocardial storage and hypertrophy in Fabry disease. Heart
2019;105:470-6. DOI
137. Moon JC, Sheppard M, Reed E, Lee P, Elliott PM, Pennell DJ. The histological basis of late gadolinium enhancement cardiovascular
magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson 2006;8:479-82. DOI
138. Niemann M, Herrmann S, Hu K, et al. Differences in Fabry cardiomyopathy between female and male patients: consequences for
diagnostic assessment. JACC Cardiovasc Imaging 2011;4:592-601. DOI
139. Hsu TR, Hung SC, Chang FP, et al. Later onset Fabry disease, cardiac damage progress in silence: experience with a highly prevalent
mutation. J Am Coll Cardiol 2016;68:2554-63. DOI PubMed
140. Koeppe S, Neubauer H, Breunig F, et al. MR-based analysis of regional cardiac function in relation to cellular integrity in Fabry
disease. Int J Cardiol 2012;160:53-8. DOI
141. Deva DP, Hanneman K, Li Q, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes
and patterns of myocardial scarring in Anderson-Fabry disease. J Cardiovasc Magn Reson 2016;18:14. DOI PubMed PMC
142. Weidemann F, Niemann M, Herrmann S, et al. A new echocardiographic approach for the detection of non-ischaemic fibrosis in
hypertrophic myocardium. Eur Heart J 2007;28:3020-6. DOI
143. Serra VM, Barba MA, Torrá R, et al. Role of cardiac magnetic resonance in cardiac involvement of Fabry disease. Med Clin
2010;135:300-5. DOI PubMed
144. Krämer J, Niemann M, Störk S, et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in
Fabry disease. Am J Cardiol 2014;114:895-900. DOI
145. Hanneman K, Karur GR, Wasim S, Morel CF, Iwanochko RM. Prognostic significance of cardiac magnetic resonance imaging late
gadolinium enhancement in Fabry disease. Circulation 2018;138:2579-81. DOI PubMed
146. Hiestand R, Nowak A, Sokolska JM, et al. Clinical and CMR characteristics associated with cardiac events in patients with Fabry
disease. Int J Cardiol 2023;382:46-51. DOI
147. Gatterer C, Beitzke D, Graf S, et al. Long-term monitoring of cardiac involvement under migalastat treatment using magnetic
resonance tomography in Fabry disease. Life 2023;13:1213. DOI PubMed PMC
148. Iles LM, Ellims AH, Llewellyn H, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse
interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 2015;16:14-22. DOI
149. Ditaranto R, Leone O, Lovato L, et al. Correlations between cardiac magnetic resonance and myocardial histologic findings in Fabry
disease. JACC Cardiovasc Imaging 2023;16:1629-32. DOI
150. Pagano JJ, Chow K, Khan A, et al. Reduced right ventricular native myocardial T in Anderson-Fabry disease: comparison to
1
pulmonary hypertension and healthy controls. PLoS One 2016;11:e0157565. DOI PubMed PMC
151. Pica S, Sado DM, Maestrini V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role
in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014;16:99. DOI
PubMed PMC
152. Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic
resonance noncontrast myocardial T mapping. Circ Cardiovasc Imaging 2013;6:392-8. DOI PubMed
1
153. Thompson RB, Chow K, Khan A, et al. T mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of
1
hypertrophy and sex. Circ Cardiovasc Imaging 2013;6:637-45. DOI
154. Walter TC, Knobloch G, Canaan-Kuehl S, et al. Segment-by-segment assessment of left ventricular myocardial affection in
Anderson-Fabry disease by non-enhanced T -mapping. Acta Radiol 2017;58:914-21. DOI
1
155. Karur GR, Robison S, Iwanochko RM, et al. Use of myocardial T mapping at 3.0 T to differentiate Anderson-Fabry disease from
1
hypertrophic cardiomyopathy. Radiology 2018;288:398-406. DOI
156. van den Boomen M, Slart RHJA, Hulleman EV, et al. Native T reference values for nonischemic cardiomyopathies and populations
1
with increased cardiovascular risk: a systematic review and meta-analysis. J Magn Reson Imaging 2018;47:891-912. DOI PubMed
PMC
157. Roller FC, Fuest S, Meyer M, et al. Assessment of cardiac involvement in Fabry disease (FD) with native T mapping. Rofo
1
2019;191:932-9. DOI PubMed
158. Mathur S, Dreisbach JG, Karur GR, et al. Loss of base-to-apex circumferential strain gradient assessed by cardiovascular magnetic
resonance in Fabry disease: relationship to T mapping, late gadolinium enhancement and hypertrophy. J Cardiovasc Magn Reson
1
2019;21:45. DOI PubMed PMC