Page 83 - Read Online
P. 83
Page 24 of 29 Aguiar. Rare Dis Orphan Drugs J 2024;3:13 https://dx.doi.org/10.20517/rdodj.2023.56
potential role of enzyme replacement therapy (ERT) for avoiding progression of disease. Eur J Echocardiogr 2011;12:671-7. DOI
103. Sadick N, Thomas L. Cardiovascular manifestations in Fabry disease: a clinical and echocardiographic study. Heart Lung Circ
2007;16:200-6. DOI PubMed
104. Graziani F, Laurito M, Pieroni M, et al. Right ventricular hypertrophy, systolic function, and disease severity in Anderson-Fabry
disease: an echocardiographic study. J Am Soc Echocardiogr 2017;30:282-91. DOI
105. Hashimoto I, Li X, Hejmadi Bhat A, Jones M, Zetts AD, Sahn DJ. Myocardial strain rate is a superior method for evaluation of left
ventricular subendocardial function compared with tissue Doppler imaging. J Am Coll Cardiol 2003;42:1574-83. DOI PubMed
106. Morris DA, Blaschke D, Canaan-Kühl S, et al. Global cardiac alterations detected by speckle-tracking echocardiography in Fabry
disease: left ventricular, right ventricular, and left atrial dysfunction are common and linked to worse symptomatic status. Int J
Cardiovasc Imaging 2015;31:301-13. DOI
107. Gruner C, Verocai F, Carasso S, et al. Systolic myocardial mechanics in patients with Anderson-Fabry disease with and without left
ventricular hypertrophy and in comparison to nonobstructive hypertrophic cardiomyopathy. Echocardiography 2012;29:810-7. DOI
108. Saccheri MC, Cianciulli TF, Lax JA, et al. Two-dimensional speckle tracking echocardiography for early detection of myocardial
damage in young patients with Fabry disease. Echocardiography 2013;30:1069-77. DOI
109. Shanks M, Thompson RB, Paterson ID, et al. Systolic and diastolic function assessment in fabry disease patients using speckle-
tracking imaging and comparison with conventional echocardiographic measurements. J Am Soc Echocardiogr 2013;26:1407-14.
DOI
110. Spinelli L, Giugliano G, Imbriaco M, et al. Left ventricular radial strain impairment precedes hypertrophy in Anderson-Fabry disease.
Int J Cardiovasc Imaging 2020;36:1465-76. DOI
111. Zada M, Lo Q, Boyd AC, et al. Basal segmental longitudinal strain: a marker of subclinical myocardial involvement in Anderson-
Fabry disease. J Am Soc Echocardiogr 2021;34:405-13.e2. DOI
112. Lu DY, Huang WM, Wang WT, et al. Reduced global longitudinal strain as a marker for early detection of Fabry cardiomyopathy.
Eur Heart J Cardiovasc Imaging 2022;23:487-95. DOI
113. Réant P, Testet E, Reynaud A, et al. Characterization of Fabry disease cardiac involvement according to longitudinal strain,
cardiometabolic exercise test, and T1 mapping. Int J Cardiovasc Imaging 2020;36:1333-42. DOI
114. Lillo R, Graziani F, Panaioli E, et al. Right ventricular strain in Anderson-Fabry disease. Int J Cardiol 2021;330:84-90. DOI
115. Meucci MC, Lillo R, Lombardo A, et al. Comparative analysis of right ventricular strain in Fabry cardiomyopathy and sarcomeric
hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2023;24:542-51. DOI PubMed PMC
116. Boyd AC, Lo Q, Devine K, et al. Left atrial enlargement and reduced atrial compliance occurs early in Fabry cardiomyopathy. J Am
Soc Echocardiogr 2013;26:1415-23. DOI
117. Cheng-Baron J, Chow K, Pagano JJ, et al. Quantification of circumferential, longitudinal, and radial global fractional shortening
using steady-state free precession cines: a comparison with tissue-tracking strain and application in Fabry disease. Magn Reson Med
2015;73:586-96. DOI
118. Halfmann MC, Altmann S, Schoepf UJ, et al. Left atrial strain correlates with severity of cardiac involvement in Anderson-Fabry
disease. Eur Radiol 2023;33:2039-51. DOI PubMed PMC
119. Pichette M, Serri K, Pagé M, Di LZ, Bichet DG, Poulin F. Impaired left atrial function in Fabry disease: a longitudinal speckle-
tracking echocardiography study. J Am Soc Echocardiogr 2017;30:170-9.e2. DOI PubMed
120. Esposito R, Russo C, Santoro C, et al. Association between left atrial deformation and Brain involvement in patients with Anderson-
Fabry disease at diagnosis. J Clin Med 2020;9:2741. DOI PubMed PMC
121. Spinelli L, Giugliano G, Pisani A, et al. Does left ventricular function predict cardiac outcome in Anderson-Fabry disease? Int J
Cardiovasc Imaging 2021;37:1225-36. DOI PubMed PMC
122. Beer M, Weidemann F, Breunig F, et al. Impact of enzyme replacement therapy on cardiac morphology and function and late
enhancement in Fabry’s cardiomyopathy. Am J Cardiol 2006;97:1515-8. DOI
123. Krämer J, Niemann M, Liu D, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis
in Fabry disease. Eur Heart J 2013;34:1587-96. DOI
124. Weidemann F, Breunig F, Beer M, et al. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry
disease: a prospective strain rate imaging study. Circulation 2003;108:1299-301. DOI
125. Weidemann F, Niemann M, Breunig F, et al. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy: evidence
for a better outcome with early treatment. Circulation 2009;119:524-9. DOI
126. Semelka RC, Tomei E, Wagner S, et al. Normal left ventricular dimensions and function: interstudy reproducibility of measurements
with cine MR imaging. Radiology 1990;174:763-8. DOI
127. Messalli G, Imbriaco M, Avitabile G, et al. Role of cardiac MRI in evaluating patients with Anderson-Fabry disease: assessing
cardiac effects of long-term enzyme replacement therapy. Radiol Med 2012;117:19-28. DOI
128. Imbriaco M, Pisani A, Spinelli L, et al. Effects of enzyme-replacement therapy in patients with Anderson-Fabry disease: a
prospective long-term cardiac magnetic resonance imaging study. Heart 2009;95:1103-7. DOI
129. Koskenvuo JW, Hartiala JJ, Nuutila P, et al. Twenty-four-month alpha-galactosidase a replacement therapy in Fabry disease has only
minimal effects on symptoms and cardiovascular parameters. J Inherit Metab Dis 2008;31:432-41. DOI
130. Hazari H, Belenkie I, Kryski A, et al. Comparison of cardiac magnetic resonance imaging and echocardiography in assessment of left
ventricular hypertrophy in Fabry disease. Can J Cardiol 2018;34:1041-7. DOI