Page 35 - Read Online
P. 35

Mazur et al. Rare Dis Orphan Drugs J 2023;2:1  https://dx.doi.org/10.20517/rdodj.2022.12  Page 9 of 10

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Horwitz MS, Corey SJ, Grimes HL, Tidwell T. ELANE mutations in cyclic and severe congenital neutropenia: genetics and
                   pathophysiology. Hematol Oncol Clin North Am 2013;27:19-41, vii.  DOI  PubMed  PMC
               2.       Klein C. Congenital neutropenia. Hematology Am Soc Hematol Educ Program 2009:344-50.  DOI  PubMed
               3.       Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K. Severe congenital neutropenias. Nat Rev Dis Primers 2017;3:17032.  DOI
                   PubMed  PMC
               4.       Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB. Congenital neutropenia: diagnosis, molecular bases and patient
                   management. Orphanet J Rare Dis 2011;6:26.  DOI  PubMed  PMC
               5.       Touw IP. Congenital neutropenia: disease models guiding new treatment strategies. Curr Opin Hematol 2022;29:27-33.  DOI  PubMed
                   PMC
               6.       Papadaki HA, Mavroudi I, Almeida A, et al. Congenital and acquired chronic neutropenias: challenges, perspectives and
                   implementation of the EuNet-INNOCHRON action. Hemasphere 2020;4:e406.  DOI  PubMed  PMC
               7.       Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome,
                   a combined immunodeficiency disease. Nat Genet 2003;34:70-4.  DOI  PubMed
               8.       Skokowa J. Circumventing mutation to nix neutropenia. N Engl J Med 2021;384:1956-8.  DOI  PubMed
               9.       Vilboux T, Lev A, Malicdan MC, et al. A congenital neutrophil defect syndrome associated with mutations in VPS45. N Engl J Med
                   2013;369:54-65.  DOI  PubMed  PMC
               10.      Mir P, Klimiankou M, Findik B, et al. New insights into the pathomechanism of cyclic neutropenia. Ann N Y Acad Sci 2020;1466:83-
                   92.  DOI  PubMed
               11.      Dale DC, Bolyard AA, Shannon JA, et al. Outcomes for patients with severe chronic neutropenia treated with granulocyte colony-
                   stimulating factor. Blood Adv 2022;6:3861-9.  DOI  PubMed  PMC
               12.      Rosenberg PS, Zeidler C, Bolyard AA, et al. Stable long-term risk of leukaemia in patients with severe congenital neutropenia
                   maintained on G-CSF therapy. Br J Haematol 2010;150:196-9.  DOI  PubMed  PMC
               13.      Benson KF, Li FQ, Person RE, et al. Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of
                   neutrophil elastase. Nat Genet 2003;35:90-6.  DOI  PubMed
               14.      Majewski P, Majchrzak-Gorecka M, Grygier B, Skrzeczynska-Moncznik J, Osiecka O, Cichy J. Inhibitors of serine proteases in
                   regulating the production and function of neutrophil extracellular traps. Front Immunol 2016;7:261.  DOI  PubMed  PMC
               15.      Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of
                   neutrophil extracellular traps. J Cell Biol 2010;191:677-91.  DOI  PubMed  PMC
               16.      Skrzeczynska-Moncznik J, Zabieglo K, Osiecka O, et al. Differences in staining for neutrophil elastase and its controlling inhibitor
                   SLPI reveal heterogeneity among neutrophils in psoriasis. J Invest Dermatol 2020;140:1371-1378.e3.  DOI  PubMed
               17.      Zabieglo K, Majewski P, Majchrzak-Gorecka M, et al. The inhibitory effect of secretory leukocyte protease inhibitor (SLPI) on
                   formation of neutrophil extracellular traps. J Leukoc Biol 2015;98:99-106.  DOI  PubMed  PMC
               18.      Nasri M, Ritter M, Mir P, et al. CRISPR/Cas9-mediated ELANE knockout enables neutrophilic maturation of primary hematopoietic
                   stem and progenitor cells and induced pluripotent stem cells of severe congenital neutropenia patients. Haematologica 2020;105:598-
                   609.  DOI  PubMed  PMC
               19.      Horwitz MS. Neutrophil elastase: nonsense lost in translation. Cell Stem Cell 2021;28:790-2.  DOI  PubMed
               20.      Nanua S, Murakami M, Xia J, et al. Activation of the unfolded protein response is associated with impaired granulopoiesis in
                   transgenic mice expressing mutant Elane. Blood 2011;117:3539-47.  DOI  PubMed  PMC
               21.      Rao S, Yao Y, Soares de Brito J, et al. Dissecting ELANE neutropenia pathogenicity by human HSC gene editing. Cell Stem Cell
                   2021;28:833-845.e5.  DOI  PubMed  PMC
               22.      Garg B, Mehta HM, Wang B, Kamel R, Horwitz MS, Corey SJ. Inducible expression of a disease-associated ELANE mutation impairs
                   granulocytic differentiation, without eliciting an unfolded protein response. J Biol Chem 2020;295:7492-500.  DOI  PubMed  PMC
               23.      Li FQ, Horwitz M. Characterization of mutant neutrophil elastase in severe congenital neutropenia. J Biol Chem 2001;276:14230-41.
                   DOI  PubMed
               24.      Grenda DS, Murakami M, Ghatak J, et al. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the
                   unfolded protein response and cellular apoptosis. Blood 2007;110:4179-87.  DOI  PubMed  PMC
               25.      Nustede R, Klimiankou M, Klimenkova O, et al. ELANE mutant-specific activation of different UPR pathways in congenital
   30   31   32   33   34   35   36   37   38   39   40