Page 749 - Read Online
P. 749
Vandiver et al. Plast Aesthet Res 2020;7:63 I http://dx.doi.org/10.20517/2347-9264.2020.159 Page 13 of 14
PLoS One 2013;8:e63607.
84. Weinmüllner R, Zbiral B, Becirovic A, et al. Organotypic human skin culture models constructed with senescent fibroblasts show
hallmarks of skin aging. NPJ Aging Mech Dis 2020;6:4.
85. Spindler M, Beal MF, Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 2009;5:597-610.
86. Luo K, Yu JH, Quan Y, et al. Therapeutic potential of coenzyme Q<sub>10</sub> in mitochondrial dysfunction during tacrolimus-
induced beta cell injury. Sci Rep 2019;9:7995.
87. Knott A, Achterberg V, Smuda C, et al. Topical treatment with coenzyme Q10-containing formulas improves skin’s Q10 level and
provides antioxidative effects. Biofactors 2015;41:383-90.
88. Tan CL, Chin T, Tan CYR, Rovito HA, Quek LS, et al. Nicotinamide metabolism modulates the proliferation/differentiation balance and
senescence of human primary keratinocytes. J Invest Dermatol 2019;139:1638-47.e3.
89. Kang HT, Hwang ES. Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 2009;8:426-
38.
90. Beher D, Wu J, Cumine S, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 2009;74:619-24.
91. Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
Nature 2009;458:1056-60.
92. Um JH, Park SJ, Kang H, et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes
2010;59:554-63.
93. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42.
94. Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ
Physiol 2009;297:H13-20.
95. Hung CF, Lin YK, Huang ZR, Fang JY. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol
Pharm Bull 2008;31:955-62.
96. Farris P, Krutmann J, Li YH, McDaniel D, Krol Y. Resveratrol: a unique antioxidant offering a multi-mechanistic approach for treating
aging skin. J Drugs Dermatol 2013;12:1389-94.
97. Dierickx CC, Anderson RR. Visible light treatment of photoaging. Dermatol Ther 2005;18:191-208.
98. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of
cytochrome c oxidase under near IR radiation. J Photochem Photobiol B 2005;81:98-106.
99. Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B
1995;27:219-23.
100. Greco M, Guida G, Perlino E, Marra E, Quagliariello E. Increase in RNA and protein synthesis by mitochondria irradiated with helium-
neon laser. Biochem Biophys Res Commun 1989;163:1428-34.
101. Yu W, Naim JO, Lanzafame RJ. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol
1994;59:167-70.
102. Barolet D, Roberge CJ, Auger FA, Boucher A, Germain L. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED
light source: clinical correlation with a single-blinded study. J Invest Dermatol 2009;129:2751-9.
103. Sadick NS. A study to determine the efficacy of a novel handheld light-emitting diode device in the treatment of photoaged skin. J Cosmet
Dermatol 2008;7:263-7.
104. Russell BA, Kellett N, Reilly LR. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin
rejuvenation. J Cosmet Laser Ther 2005;7:196-200.
105. Soydas T, Yaprak Sarac E, Cinar S, et al. The protective effects of metformin in an in vitro model of aging 3T3 fibroblast under the high
glucose conditions. J Physiol Biochem 2018;74:273-81.
106. Rostamkalaei SS, Akbari J, Saeedi M, Morteza-Semnani K, Nokhodchi A. Topical gel of metformin solid lipid nanoparticles: a hopeful
promise as a dermal delivery system. Colloids Surf B Biointerfaces 2019;175:150-7.
107. Chung CL, Lawrence I, Hoffman M, et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory,
prospective, randomized trial. Geroscience 2019;41:861-9.
108. Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY) 2019;11:8048-67.
109. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature
2011;479:232-6.
110. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016;530:184-9.
111. Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, Zhou D, Zheng G. Discovery of piperlongumine as a potential novel lead for the
development of senolytic agents. Aging (Albany NY) 2016;8:2915-26.
112. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-
apoptotic factors. Aging Cell 2016;15:428-35.
113. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs.
Aging Cell 2015;14:644-58.
114. Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic
strategies. Biochem Pharmacol 2017;142:1-12.
115. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000;18:621-63.
116. Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, et al. Motif module map reveals enforcement of aging by continual NF-kappaB
activity. Genes Dev 2007;21:3244-57.