Page 340 - Read Online
P. 340

Velasquillo et al. Plast Aesthet Res 2020;7:31  I  http://dx.doi.org/10.20517/2347-9264.2020.30                                 Page 11 of 14

               40.   Kim YS, Kwon OR, Choi YJ, Suh DS, Heo DB, et al. Comparative matched-pair analysis of the injection versus implantation of
                   mesenchymal stem cells for knee osteoarthritis. Am J Sports Med 2015;43:2738-46.
               41.   Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. The Knee 2006;13:184-8.
               42.   Dhollander A, Verdonk P, Verdonk R. Treatment of painful, irreparable partial meniscal defects with a polyurethane scaffold: midterm
                   clinical outcomes and survival analysis. Am J Sports Med 2016;44:2615-21.
               43.   Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints--Part I: tibial surface of the knee. J
                   Biomech Eng 1983;105:216-25.
               44.   Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the
                   human knee. A preliminary report. Am J Sports Med 1986;14:270-5.
               45.   Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, et al. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes
                   after twenty-one years, compared with matched controls. Arthritis Rheum 1998;41:687-93.
               46.   Leroy A, Beaufils P, Faivre B, Steltzlen C, Boisrenoult P, et al. Actifit® polyurethane meniscal scaffold: MRI and functional outcomes
                   after a minimum follow-up of 5 years. Orthop Traumatol Surg Res OTSR 2017;103:609-14.
               47.   Schüttler KF, Haberhauer F, Gesslein M, Heyse TJ, Figiel J, et al. Midterm follow-up after implantation of a polyurethane meniscal
                   scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc Off J
                   ESSKA 2016;24:1478-84.
               48.   Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A
                   2008;85:445-55.
               49.   Dutton AQ, Choong PF, Goh JCH, Lee EH, Hui JHP. Enhancement of meniscal repair in the avascular zone using mesenchymal stem
                   cells in a porcine model. J Bone Joint Surg Br 2010;92:169-75.
               50.   Olivos-Meza A, Pérez Jiménez FJ, Granados-Montiel J, Landa-Solís C, Cortés González S, et al. First clinical application of polyurethane
                   meniscal scaffolds with mesenchymal stem cells and assessment of cartilage quality with T2 mapping at 12 months. Cartilage
                   2019;194760351985241.
               51.   Lai RC, Yeo RWY, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015;40:82-8.
               52.   Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs.
                   Nucleic Acids Res 2010;38:215-24.
               53.   Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE. microRNA-140 targets RALA and regulates chondrogenic differentiation of
                   human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev 2014;23:290-304.
               54.   Liang Y, Duan L, Xiong J, Zhu W, Liu Q, et al. E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix
                   degradation in human chondrocytes. Arthritis Res Ther 2016;18:105.
               55.   Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes
                   Dev 2010;24:1173-85.
               56.   Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal
                   stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 2017;7:180-95.
               57.   Yu XM, Meng HY, Yuan XL, Wang Y, Guo QY, et al. MicroRNAs’ involvement in osteoarthritis and the prospects for treatments. Evid
                   Based Complement Alternat Med 2015;2015:1-13.
               58.   Toh WS. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Dev Biol 2017;9.
               59.   Toghraie F, Razmkhah M, Gholipour MA, Faghih Z, Chenari N, et al. Scaffold-free adipose-derived stem cells (ASCs) improve
                   experimentally induced osteoarthritis in rabbits. Arch Iran Med 2012;15:495-9.
               60.   Zhou J, Wang Y, Liu Y, Zeng H, Xu H, et al. Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis
                   through autophagy inducing. J Cell Biochem 2019;120:2198-212.
               61.   Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as
                   bone marrow-derived cells? Osteoarthritis Cartilage 2005;13:845-53.
               62.   Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Concise review: the use of adipose-derived stromal vascular fraction cells and
                   platelet rich plasma in regenerative plastic surgery. Stem Cells 2017;117-34.
               63.   MEDIPOST - The Future of Biotechnology [Internet]. Available from: http://www.medi-post.com/front/eng/stemcell/cartistem.do [Last
                   accessed on 12 Jun 2020]
               64.   Park Y, Ha C, Lee C, Yoon YC, Park Y. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord
                   blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years
                   of extended follow-up. Stem Cells Transl Med 2017;6:613-21.
               65.   Congenital anomalies [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies [Last accessed
                   on 12 Jun 2020]
               66.   Holmes LB. Congenital malformations. N Engl J Med 1976;295:204-7.
               67.   Corsello G, Giuffrè M. Congenital malformations. J Matern Fetal Neonatal Med 2012;25:25-9.
               68.   Kumar V, Abbas A, Aster J. Robbins basic pathology. 10th Edition. Elsevier; 2017. p. 952.
               69.   Suutarla S, Rautio J, Ritvanen A, Ala-Mello S, Jero J, et al. Microtia in Finland: comparison of characteristics in different populations. Int
                   J Pediatr Otorhinolaryngol 2007;71:1211-7.
               70.   Eavey RD. Microtia and significant auricular malformation. Ninety-two pediatric patients. Arch Otolaryngol Head Neck Surg
                   1995;121:57-62.
               71.   Kelley PE, Scholes MA. Microtia and congenital aural atresia. Otolaryngol Clin North Am 2007;40:61-80, vi.
   335   336   337   338   339   340   341   342   343   344   345