Page 49 - Read Online
P. 49

Garbuzov et al. Plast Aesthet Res 2023;10:9  https://dx.doi.org/10.20517/2347-9264.2022.51  Page 13 of 16

               necessary before these interventions become standard practice.


               DECLARATIONS
               Authors’ contributions
               Made substantial contributions to the conception and design of the review: Garbuzov A, Nichols DS,
               Chim H
               Review of literature, manuscript writing and critical revisions: Shekouhi R


               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               None.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Padovano WM, Dengler J, Patterson MM, et al. Incidence of nerve injury after extremity trauma in the United States. Hand (NY)
                   2022;17:615-23.  DOI  PubMed  PMC
               2.       Bazarek S, Brown JM. The evolution of nerve transfers for spinal cord injury. Exp Neurol 2020;333:113426.  DOI  PubMed
               3.       Trejo JL. Advances in the ongoing battle against the consequences of peripheral nerve injuries. Anat Rec (Hoboken) 2018;301:1606-
                   13.  DOI  PubMed
               4.       Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The Present and future for peripheral nerve regeneration. Orthopedics
                   2017;40:e141-56.  DOI  PubMed
               5.       Shimizu M, Matsumine H, Osaki H, et al. Adipose-derived stem cells and the stromal vascular fraction in polyglycolic acid-collagen
                   nerve conduits promote rat facial nerve regeneration. Wound Repair Regen 2018;26:446-55.  DOI  PubMed
               6.       Di Summa PG, Schiraldi L, Cherubino M, et al. Adipose derived stem cells reduce fibrosis and promote nerve regeneration in rats.
                   Anat Rec (Hoboken) 2018;301:1714-21.  DOI  PubMed  PMC
               7.       Carriel V, Garrido-Gómez J, Hernández-Cortés P, et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal
                   stem cells for peripheral nerve regeneration. J Neural Eng 2013;10:026022.  DOI  PubMed
               8.       Keane GC, Pan D, Roh J, et al. The effects of intraoperative electrical stimulation on regeneration and recovery after nerve isograft
                   repair in a rat model. Hand (NY) 2022;17:540-8.  DOI  PubMed  PMC
               9.       Jo S, Pan D, Halevi AE, et al. Comparing electrical stimulation and tacrolimus (FK506) to enhance treating nerve injuries. Muscle
                   Nerve 2019;60:629-36.  DOI  PubMed  PMC
               10.      Roh J, Schellhardt L, Keane GC, et al. Short-duration, pulsatile, electrical stimulation therapy accelerates axon regeneration and
                   recovery following tibial nerve injury and repair in rats. Plast Reconstr Surg 2022;149:681e-90e.  DOI  PubMed  PMC
               11.      Moore AM, Novak CB. Advances in nerve transfer surgery. J Hand Ther 2014;27:96-104; quiz 105.  DOI  PubMed
               12.      Peters BR, Ha AY, Moore AM, Tung TH. Nerve transfers for femoral nerve palsy: an updated approach and surgical technique. J
                   Neurosurg 2022;136:856-66.  DOI  PubMed
               13.      Nichols DS, Chim H. Contralateral obturator to femoral nerve branch transfer for multilevel lumbosacral plexus avulsion injury. Plast
                   Reconstr Surg Glob Open 2021;9:e3997.  DOI  PubMed  PMC
               14.      Cao Y, Li Y, Zhang Y, et al. Contralateral obturator nerve transfer for femoral nerve restoration: a case report. Br J Neurosurg
                   2021;35:35-9.  DOI  PubMed
   44   45   46   47   48   49   50   51   52   53   54