Page 155 - Read Online
P. 155
Page 10 of 10 Nguyen et al. Plast Aesthet Res 2019;6:31 I http://dx.doi.org/10.20517/2347-9264.2019.42
Ethical approval and consent to participate
IRB approval prior to data acquisition and study design (HS23291).
Consent for publication
A written informed consent for publication of videos and photos were obtained.
Copyright
© The Author(s) 2019.
REFERENCES
1. Enneking WF, Spanier SS, Malawer MM. The effect of the anatomic setting on the results of surgical procedures for soft parts
sarcoma of the thigh. Cancer 1981;47:1005-22.
2. Pritsch T, Malawer MM, Wu CC, Squires MH, Bickels J. Functional reconstruction of the extensor mechanism following massive
tumor resections from the anterior compartment of the thigh. Plastic Reconstr Surg 2007;120:960-9.
3. Markhede G, Stener B. Function after removal of various hip and thigh muscles for extirpation of tumors. Acta Orthop Scand
1981;52:373-95.
4. Ploutz-Snyder LL, Manini T, Ploutz-Snyder RJ, Wolf DA. Functionally relevant thresholds of quadriceps femoris strength. J Gerontol
A Biol Sci Med Sci 2002;57:B144-52.
5. Giuffre JL, Bishop AT, Shin AY. Harvest of an entire gracilis muscle and tendon for use in functional muscle transfer: a novel
technique. J Reconstr Microsurg 2012;28:349-58.
6. Willcox TM, Smith AA, Beauchamp C, Meland NB. Functional free latissimus dorsi muscle flap to the proximal lower extremity. Clin
Orthop Relat Res 2003:285-8.
7. Muramatsu K, Ihara K, Miyoshi T, Yoshida K, Hashimoto T, Taguchi T. Transfer of latissimus dorsi muscle for the functional
reconstruction of quadriceps femoris muscle following oncological resection of sarcoma in the thigh. JPRAS 2011;64:1068-74.
8. Innocenti M, Abed YY, Beltrami G, Delcroix L, Balatri A, et al. Quadriceps muscle reconstruction with free functioning latissimus
dorsi muscle flap after oncological resection. Microsurgery 2009;29:189-98.
9. Fischer S, Soimaru S, Hirsch T, Kueckelhaus M, Seitz C, et al. Local tendon transfer for knee extensor mechanism reconstruction after
soft tissue sarcoma resection. JPRAS 2015;68:729-35.
10. Grinsell D, Lonie S, Wilson KC, Choong PFM. The innervated rectus abdominis flap for quadriceps reconstruction. JPRAS
2019;72:941-5.
11. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 2010;24:2857-72.
12. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med
2013;43:179-94.
13. Riley PO, Schenkman ML, Mann RW, Hodge WA. Mechanics of a constrained chair-rise. J Biomech 1991;24:77-85.
14. Kobetic R, Triolo RJ, Uhlir JP, Bieri C, Wibowo M, et al. Implanted functional electrical stimulation system for mobility in paraplegia:
a follow-up case report. IEEE Trans Rehabil Eng 1999;7:390-8.
15. Sharma M, Marsolais EB, Polando G, Triolo RJ, Davis JA Jr, et al. Implantation of a 16-channel functional electrical stimulation
walking system. Clin Orthop Relat Res 1998:236-42.
16. Perry J, Davids JR. Gait analysis: normal and pathological function. J Pediatr Orthop 1992;12:815.
17. Murray MP, Mollinger LA, Gardner GM, Sepic SB. Kinematic and EMG patterns during slow, free, and fast walking. J Orthop Res
1984;2:272-80.
18. Shiavi R, Bugle HJ, Limbird T. Electromyographic gait assessment, Part 1: Adult EMG profiles and walking speed. J Rehabil Res Dev
1987;24:13-23.
19. Ericson MO, Nisell R, Ekholm J. Quantified electromyography of lower-limb muscles during level walking. Scand J Rehabil Med
1986;18:159-63.
20. Csongradi J, Bleck E, Ford WF. Gait electromyography in normal and spastic children, with special reference to quadriceps femoris
and hamstring muscles. Dev Med Child Neurol 1979;21:738-48.
21. Annaswamy TM, Giddings CJ, Della Croce U, Kerrigan DC. Rectus femoris: its role in normal gait. Arch Phys Med Rehabil
1999;80:930-4.
22. Gustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA Jr, et al. Fascicular anatomy of human femoral nerve: implications for neural
prostheses using nerve cuff electrodes. J Rehabil Res Dev 2009;46:973-84.