Page 21 - Read Online
P. 21

Page 16 of 16           Tejiram et al. Plast Aesthet Res. 2025;12:9  https://dx.doi.org/10.20517/2347-9264.2024.109

               27.      Walters W, Hyde ER, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer
                   marker gene primers for microbial community surveys. mSystems. 2015;1:e00009-15.  DOI  PubMed  PMC
               28.      Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
                   Nat Biotechnol. 2019;37:852-7.  DOI  PubMed  PMC
               29.      Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
                   DOI  PubMed  PMC
               30.      Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based
                   tools. Nucleic Acids Res. 2013;41:D590-6.  DOI  PubMed  PMC
               31.      Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
                   DOI  PubMed  PMC
               32.      Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol
                   Biol Evol. 2013;30:772-80.  DOI  PubMed  PMC
               33.      Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences
                   in marker-gene and metagenomics data. Microbiome. 2018;6:226.  DOI  PubMed  PMC
               34.      Team RC. R: a language and environment for statistical computing. Available from: https://cran.r-project.org/doc/manuals/r-release/
                   fullrefman.pdf. [Last accessed on 8 Apr 2025].
               35.      Faith DP, Baker AM. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinform
                   Online. 2007;2:121-8.  PubMed  PMC
               36.      Pielou E. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131-44.  DOI
               37.      Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods.
                   2013;10:1200-2.  DOI  PubMed  PMC
               38.      Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into
                   factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576-85.  DOI  PubMed  PMC
               39.      Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.  DOI  PubMed
                   PMC
               40.      Nosanov LB, McLawhorn MM, Hassan L, et al. Graft loss: review of a single burn center’s experience and proposal of a graft loss
                   grading scale. J Surg Res. 2017;216:185-90.  DOI  PubMed
               41.      Corcione S, Lupia T, De Rosa FG; Host and Microbiota Interaction Study Group (ESGHAMI) of the European Society of Clinical
                   Microbiology and Infectious Diseases (ESCMID). Microbiome in the setting of burn patients: implications for infections and clinical
                   outcomes. Burns Trauma. 2020;8:tkaa033.  DOI  PubMed  PMC
               42.      Sanjar F, Weaver AJ, Peacock TJ, Nguyen JQ, Brandenburg KS, Leung KP. Identification of metagenomics structure and function
                   associated with temporal changes in rat (rattus norvegicus) skin microbiome during health and cutaneous burn. J Burn Care Res.
                   2020;41:347-58.  DOI  PubMed
               43.      Putra ON, Saputro ID, Hidayatullah AYN. A retrospective surveillance of the prophylactic antibiotics for debridement surgery in burn
                   patients. Int J Burns Trauma. 2021;11:96-104.  PubMed  PMC
               44.      Hill DM, Guido A, Sultan-Ali I, Arif F, Velamuri SR. A non-inferiority study comparing efficacy of preoperative prophylactic
                   antibiotics for preventing infectious complications in patients with less severe burns. Burns. 2021;47:67-71.  DOI  PubMed
               45.      van Langeveld I, Gagnon RC, Conrad PF, et al. Multiple-drug resistance in burn patients: a retrospective study on the impact of
                   antibiotic resistance on survival and length of stay. J Burn Care Res. 2017;38:99-105.  DOI  PubMed  PMC
               46.      Timmons MJ. Are systemic prophylactic antibiotics necessary for burns? Ann R Coll Surg Engl. 1983;65:80-2.  PMC
               47.      Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases
                   antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130:2211-21.  DOI  PubMed  PMC
               48.      Hruz P, Zinkernagel AS, Jenikova G, et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-
                   toxin-dependent innate immune activation. Proc Natl Acad Sci U S A. 2009;106:12873-8.  DOI  PubMed  PMC
               49.      Gabani P, Prakash D, Singh OV. Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles. 2012;16:697-713.  DOI
                   PubMed
               50.      Liu SH, Huang YC, Chen LY, Yu SC, Yu HY, Chuang SS. The skin microbiome of wound scars and unaffected skin in patients with
                   moderate to severe burns in the subacute phase. Wound Repair Regen. 2018;26:182-91.  DOI  PubMed
               51.      Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. Staphylococcus aureus shifts toward commensalism in response
                   to corynebacterium species. Front Microbiol. 2016;7:1230.  DOI  PubMed  PMC
               52.      Delanghe L, Spacova I, Van Malderen J, Oerlemans E, Claes I, Lebeer S. The role of lactobacilli in inhibiting skin pathogens. Biochem
                   Soc Trans. 2021;49:617-27.  DOI  PubMed
               53.      Tsuzukibashi O, Uchibori S, Kobayashi T, et al. Isolation and identification methods of Rothia species in oral cavities. J Microbiol
                   Methods. 2017;134:21-6.  DOI  PubMed
   16   17   18   19   20   21   22   23   24   25   26