Page 54 - Read Online
P. 54
Chi et al. Plast Aesthet Res 2023;10:56 https://dx.doi.org/10.20517/2347-9264.2023.48 Page 11 of 13
epidemiological findings, neuropathic pain and quality of life in 158 patients. J Peripher Nerv Syst 2010;15:120-7. DOI
9. Ray WZ, Mackinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol
2010;223:77-85. DOI PubMed PMC
10. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve
injury. J Neuroinflammation 2011;8:110. DOI PubMed PMC
11. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016;594:3521-31. DOI PubMed
PMC
12. McGregor CE, English AW. The Role of BDNF in peripheral nerve regeneration: activity-dependent treatments and Val66Met. Front
Cell Neurosci 2018;12:522. DOI PubMed PMC
13. Eggers R, Tannemaat MR, Ehlert EM, Verhaagen J. A spatio-temporal analysis of motoneuron survival, axonal regeneration and
neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol 2010;223:207-20. DOI PubMed
14. Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci
2011;31:5325-34. DOI PubMed PMC
15. Moore AM, Wagner IJ, Fox IK. Principles of nerve repair in complex wounds of the upper extremity. Semin Plast Surg 2015;29:40-7.
DOI PubMed PMC
16. Lee SK, Wolfe SW. Peripheral nerve injury and repair. J Am Acad Orthop Surg 2000;8:243-52. DOI PubMed
17. Kobayashi J, Mackinnon SE, Watanabe O, et al. The effect of duration of muscle denervation on functional recovery in the rat model.
Muscle Nerve 1997;20:858-66. DOI
18. Pellegrino RG, Spencer PS. Schwann cell mitosis in response to regenerating peripheral axons in vivo. Brain Res 1985;341:16-25.
DOI PubMed
19. Weinberg HJ, Spencer PS. The fate of Schwann cells isolated from axonal contact. J Neurocytol 1978;7:555-69. DOI PubMed
20. Kino T, Hatanaka H, Hashimoto M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation,
isolation, and physico-chemical and biological characteristics. J Antibiot 1987;40:1249-55. DOI
21. Starzl TE, Todo S, Fung J, Demetris AJ, Venkataramman R, Jain A. FK 506 for liver, kidney, and pancreas transplantation. Lancet
1989;2:1000-4. DOI PubMed PMC
22. The U.S. Multicenter FK506 Liver Study Group. A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in
liver transplantation. N Engl J Med 1994;331:1110-5. DOI
23. Mouzaki A, Dai Y, Weil R, Rungger D. Cyclosporin A and FK506 prevent the derepression of the IL-2 gene in mitogen-induced
primary T lymphocytes. Cytokine 1992;4:151-60. DOI PubMed
24. Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. Immunosuppressant FK506 promotes neurite outgrowth in cultures of
PC12 cells and sensory ganglia. Proc Natl Acad Sci U S A 1994;91:3191-5. DOI PubMed PMC
25. Gold BG, Katoh K, Storm-Dickerson T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J
Neurosci 1995;15:7509-16. DOI PubMed PMC
26. Grand AG, Myckatyn TM, Mackinnon SE, Hunter DA. Axonal regeneration after cold preservation of nerve allografts and
immunosuppression with tacrolimus in mice. J Neurosurg 2002;96:924-32. DOI PubMed
27. Liu J, Albers MW, Wandless TJ, et al. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of
calcineurin phosphatase activity. Biochemistry 1992;31:3896-901. DOI PubMed
28. Gold BG, Yew JY, Zeleny-Pooley M. The immunosuppressant FK506 increases GAP-43 mRNA levels in axotomized sensory
neurons. Neurosci Lett 1998;241:25-8. DOI PubMed
29. Udina E, Ceballos D, Verdú E, Gold BG, Navarro X. Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse
peripheral nerve. Muscle Nerve 2002;26:348-55. DOI PubMed
30. Skene JH, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ, Freeman JA. A protein induced during nerve growth (GAP-43) is a
major component of growth-cone membranes. Science 1986;233:783-6. DOI
31. Tanaka K, Fujita N, Higashi Y, Ogawa N. Neuroprotective and antioxidant properties of FKBP-binding immunophilin ligands are
independent on the FKBP12 pathway in human cells. Neurosci Lett 2002;330:147-50. DOI PubMed
32. Snyder AK, Fox IK, Nichols CM, et al. Neuroregenerative effects of preinjury FK-506 administration. Plast Reconstr Surg
2006;118:360-7. DOI
33. Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS. Immunophilin FK506-binding protein 52 (not FK506-binding protein 12)
mediates the neurotrophic action of FK506. J Pharmacol Exp Ther 1999;289:1202-10. PubMed
34. Czar MJ, Owens-Grillo JK, Yem AW, et al. The hsp56 immunophilin component of untransformed steroid receptor complexes is
localized both to microtubules in the cytoplasm and to the same nonrandom regions within the nucleus as the steroid receptor. Mol
Endocrinol 1994;8:1731-41. DOI
35. Dumont FJ. FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem 2000;7:731-48. DOI PubMed
36. Felldin M, Bäckman L, Brattström C, et al. Rescue therapy with tacrolimus (FK 506) in renal transplant recipients--a Scandinavian
multicenter analysis. Transpl Int 1997;10:13-8. DOI PubMed
37. Vanrenterghem Y, van Hooff JP, Squifflet JP, et al; European Tacrolimus/MMF Renal Transplantation Study Group. Minimization of
immunosuppressive therapy after renal transplantation: results of a randomized controlled trial. Am J Transplant 2005;5:87-95. DOI
38. Yang RK, Lowe JB 3rd, Sobol JB, Sen SK, Hunter DA, Mackinnon SE. Dose-dependent effects of FK506 on neuroregeneration in a
rat model. Plast Reconstr Surg 2003;112:1832-40. DOI