Page 97 - Read Online
P. 97
Yoshimura et al. Neuroimmunol Neuroinflammation 2020;7:264-76 I http://dx.doi.org/10.20517/2347-8659.2020.22 Page 275
79. DiSpirito JR, Zemmour D, Ramanan D, Cho J, Zilionis R, et al. Molecular diversification of regulatory T cells in nonlymphoid tissues.
Sci Immunol 2018;3;eeat5861.
80. Hayatsu N, Miyao T, Tachibana M, Murakami R, Kimura A, et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical
transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 2017;47:268-83.e9.
81. Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral SR, et al. Regulatory T cells promote myelin regeneration in the central
nervous system. Nat Neurosci 2017;20:674-80.
82. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes
recovery following CNS injury. Neuron 2015;85:703-9.
83. Guo S, Luo Y. Brain Foxp3(+) regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol
2019:81:106027.
84. Xiao W, Guo S, Chen L, Luo Y. The role of Interleukin-33 in the modulation of splenic T-cell immune responses after experimental
ischemic stroke. J Neuroimmunol 2019;333:576970.
85. Li XM, Wang XY, Feng XW, Shao MM, Liu WF, et al. Serum interleukin-33 as a novel marker for long-term prognosis and recurrence in
acute ischemic stroke patients. Brain Behav 2019;9:e01369.
86. Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V. Activation of 5-HT(7) receptor in rat glomerulosa cells is associated with an
increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology 2002;143:1748-60.
87. Klein M, Bopp T. Cyclic AMP represents a crucial component of Treg cell-mediated immune regulation. Front Immunol 2016;7:315.
88. Sacramento PM, Monteiro C, Dias ASO, Kasahara TM, Ferreira TB, et al. Serotonin decreases the production of Th1/Th17 cytokines and
elevates the frequency of regulatory CD4(+) T-cell subsets in multiple sclerosis patients. Eur J Immunol 2018;48:1376-88.
89. Gu SC, Wang CD. Early selective serotonin reuptake inhibitors for recovery after stroke: a meta-analysis and trial sequential analysis. J
Stroke Cerebrovasc Dis 2018;27:1178-89.
90. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a
randomised placebo-controlled trial. Lancet Neurol 2011;10:123-30.
91. FOCUS-Trial-Collaboration. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind,
randomised, controlled trial. Lancet 2019;393:265-74.
92. Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 2005;50:287-98.
93. Xu Y, Meng C, Liu G, Yang D, Fu L, et al. Classically activated macrophages protect against lipopolysaccharide-induced acute lung
injury by expressing amphiregulin in mice. Anesthesiology 2016;124:1086-99.
94. Abeysinghe HC, Phillips EL, Chin-Cheng H, Beart PM, Roulston CL. Modulating astrocyte transition after stroke to promote brain rescue
and functional recovery: emerging targets include rho kinase. Int J Mol Sci 2016;17:288.
95. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, et al. Neurotoxic reactive astrocytes are induced by activated
microglia. Nature 2017;541:481-7.
96. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive
astrocytes after spinal cord injury. Nat Med 2006;12:829-34.
97. Kimura H, Schubert D. Schwannoma-derived growth factor promotes the neuronal differentiation and survival of PC12 cells. J Cell Biol
1992;116:777-83.
98. Zelenika D, Adams E, Humm S, Graca L, Thompson S, et al. Regulatory T cells overexpress a subset of Th2 gene transcripts. J Immunol
2002;168:1069-79.
99. Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced
hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018;13:2029-37.
100. Zagon IS, Rahn KA, Bonneau RH, Turel AP, McLaughlin PJ. Opioid growth factor suppresses expression of experimental autoimmune
encephalomyelitis. Brain Res 2010;1310:154-61.
101. Weir C, McNeill A, Hook S, Harvie M, La Flamme AC, et al. Critical role of preproenkephalin in experimental autoimmune
encephalomyelitis. J Neuroimmunol 2006;179:18-25.
102. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue
Treg cells. Nature 2012;486:549-53.
103. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol
2018;38:121-32.
104. Yasuno F, Taguchi A, Yamamoto A, Kajimoto K, Kazui H, et al. Microstructural abnormality in white matter, regulatory T lymphocytes,
and depressive symptoms after stroke. Psychogeriatrics 2014;14:213-21.
105. Swardfager W, Herrmann N, Andreazza AC, Swartz RH, Khan MM, et al. Poststroke neuropsychiatric symptoms: relationships with IL-
17 and oxidative stress. Biomed Res Int 2014;2014:245210.
106. Dolati S, Ahmadi M, Khalili M, Taheraghdam AA, Siahmansouri H, et al. Peripheral Th17/Treg imbalance in elderly patients with
ischemic stroke. Neurol Sci 2018;39:647-54.
107. Yan J, Read SJ, Henderson RD, Hull R, O’Sullivan JD, et al. Frequency and function of regulatory T cells after ischaemic stroke in
humans. J Neuroimmunol 2012;243:89-94.
108. Pang X, Qian W. Changes in regulatory T-cell levels in acute cerebral ischemia. J Neurol Surg A Cent Eur Neurosurg 2017;78:374-9.
109. Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res
2018;96:951-68.
110. Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, et al. Autocrine production of IGF-I increases stem cell-mediated