Page 95 - Read Online
P. 95
Yoshimura et al. Neuroimmunol Neuroinflammation 2020;7:264-76 I http://dx.doi.org/10.20517/2347-8659.2020.22 Page 273
13. Santamaria-Cadavid M, Rodriguez-Castro E, Rodriguez-Yanez M, Arias-Rivas S, Lopez-Dequidt I, et al. Regulatory T cells participate in
the recovery of ischemic stroke patients. BMC Neurol 2020;20:68.
14. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, et al. Peroxiredoxin family proteins are key initiators of post-ischemic
inflammation in the brain. Nat Med 2012;18:911-7.
15. Nishibori M, Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol
Sci 2019;140:94-101.
16. Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a
review of the evidence to date. Drug Des Devel Ther 2014;8:2221-38.
17. Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med 2002;8:1363-8.
18. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, et al. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci
2001;21:5528-34.
19. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells
in the delayed phase of ischemic brain injury. Nat Med 2009;15:946-50.
20. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and
contributes to ischaemic brain injury. Nat Commun 2015;6:7360.
21. Benakis C, Brea D, Caballero S, Faraco G, Moore J, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal
gammadelta T cells. Nat Med 2016;22:516-23.
22. Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, et al. IL-23 (Interleukin-23)-producing conventional dendritic cells
control the detrimental IL-17 (Interleukin-17) response in stroke. Stroke 2018;49:155-64.
23. Mohammadi Shahrokhi V, Ravari A, Mirzaei T, Zare-Bidaki M, et al. IL-17A and IL-23: plausible risk factors to induce age-associated
inflammation in Alzheimer’s disease. Immunol Invest 2018;47:812-22.
24. Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol 2015;129:625-37.
25. Ren H, Kong Y, Liu Z, Zang D, Yang X, et al. Selective NLRP3 (Pyrin Domain-Containing Protein 3) inflammasome inhibitor reduces
brain injury after intracerebral hemorrhage. Stroke 2018;49:184-92.
26. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 1998;36:287-306.
27. Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, et al. Rational modulation of the innate immune system for
neuroprotection in ischemic stroke. Front Neurosci 2015;9:147.
28. Locatelli G, Theodorou D, Kendirli A, Jordao MJC, Staszewski O, et al. Mononuclear phagocytes locally specify and adapt their
phenotype in a multiple sclerosis model. Nat Neurosci 2018;21:1196-208.
29. Shichita T, Ito M, Morita R, Komai K, Noguchi Y, et al. MAFB prevents excess inflammation after ischemic stroke by accelerating
clearance of damage signals through MSR1. Nat Med 2017;23:723-32.
30. Sakai S, Shichita T. Inflammation and neural repair after ischemic brain injury. Neurochem Int 2018;130:104316.
31. Tian X, An R, Luo Y, Li M, Xu L, et al. Tamibarotene improves hippocampus injury induced by focal cerebral ischemia-reperfusion via
modulating PI3K/Akt pathway in rats. J Stroke Cerebrovasc Dis 2019;28:1832-40.
32. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, et al. Scara1 deficiency impairs clearance of soluble amyloid-beta by
mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 2013;4:2030.
33. Cornejo F, von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s
disease. Mediators Inflamm 2013;2013:895651.
34. Giraldi-Guimaraes A, de Freitas HT, Coelho Bde P, Macedo-Ramos H, Mendez-Otero R, et al. Bone marrow mononuclear cells and
mannose receptor expression in focal cortical ischemia. Brain Res 2012;1452:173-84.
35. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, et al. Microglia protect against brain injury and their selective elimination
dysregulates neuronal network activity after stroke. Nat Commun 2016;7:11499.
36. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte
infiltration and pro-inflammatory gene expression. J Biol Chem 2003;278:43807-17.
37. Bazan NG, Eady TN, Khoutorova L, Atkins KD, Hong S, et al. Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic
injury after experimental stroke. Exp Neurol 2012;236:122-30.
38. Wu Y, Ye XH, Guo PP, Xu SP, Wang J, et al. Neuroprotective effect of lipoxin A4 methyl ester in a rat model of permanent focal cerebral
ischemia. J Mol Neurosci 2010;42:226-34.
39. Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, et al. Increased brain damage after ischaemic stroke in mice lacking the
chemokine receptor CCR5. Br J Pharmacol 2010;160:311-21.
40. Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, et al. CCR5 is a therapeutic target for recovery after stroke
and traumatic brain injury. Cell 2019;176:1143-57.e13.
41. Cowell RM, Xu H, Parent JM, Silverstein FS. Microglial expression of chemokine receptor CCR5 during rat forebrain development and
after perinatal hypoxia-ischemia. J Neuroimmunol 2006;173:155-65.
42. Victoria ECG, de Brito Toscano EC, de Sousa Cardoso AC, da Silva DG, de Miranda AS, et al. Knockdown of C-C chemokine receptor 5
(CCR5) is protective against cerebral ischemia and reperfusion injury. Curr Neurovasc Res 2017;14:125-31.
43. Rawlinson C, Jenkins S, Thei L, Dallas ML, Chen R. Post-ischaemic immunological response in the brain: targeting microglia in
ischaemic stroke therapy. Brain Sci 2020;10:159.
44. Tsuji S, Di Martino E, Mukai T, Tsuji S, Murakami T, et al. Aggravated brain injury after neonatal hypoxic ischemia in microglia-depleted
mice. J Neuroinflammation 2020;17:111.