Page 26 - Read Online
P. 26

Page 22                Yanguas-Casás. Neuroimmunol Neuroinflammation 2020;7:13-22  I  http://dx.doi.org/10.20517/2347-8659.2019.31

               85.  Benedusi V, Meda C, Della Torre S, Monteleone G, Vegeto E, et al. A lack of ovarian function increases neuroinflammation in aged
                   mice. Endocrinology 2012;153:2777-88.
               86.  Sárvári M, Hrabovszky E, Kalló I, Solymosi N, Likó I, et al. Menopause leads to elevated expression of macrophage-associated genes
                   in the aging frontal cortex: rat and human studies identify strikingly similar changes. J Neuroinflammation 2012;9:264.
               87.  Buss C, Entringer S, Swanson JM, Wadhwa PD. The role of stress in brain development: the gestational environment’s long-term
                   effects on the brain. Cerebrum 2012;2012:4.
               88.  Levesque ML, Fahim C, Ismaylova E, Verner MP, Casey KF. The impact of the in utero and early postnatal environments on grey and
                   white matter volume: a study with adolescent monozygotic twins. Dev Neurosci 2015;37:489-96.
               89.  Yanguas-Casás N, Crespo-Castrillo A, de Ceballos ML, Chowen JA, Azcoitia I, et al. Sex differences in the phagocytic and migratory
                   activity of microglia and their impairment by palmitic acid. Glia 2018;66:522-37.
               90.  Hanamsagar R, Bilbo SD. Environment matters: microglia function and dysfunction in a changing world. Curr Opin Neurobiol
                   2017;47:146-55.
               91.  Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, et al. Generation of a microglial developmental index in mice and in
                   humans reveals a sex difference in maturation and immune reactivity. Glia 2017; 65:1504-20.
               92.  Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: a focus on ontogeny and intrinsic
                   factors. Glia 2019.
               93.  Nelson LH, Warden S, Lenz KM. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun
                   2017;64:11-22.
               94.  Wu LJ, Vadakkan KI, Zhuo M. ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward
                   potassium currents. Glia 2007;55:810-21.
               95.  McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci 2011;14:677-83.
               96.  Green PS, Simpkins JW. Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 2000;18:347-58.
               97.  Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. Neurosci Neuroecon
                   2017;6:15-29.
               98.  Loram LC, Sholar PW, Taylor FR, Wiesler JL, Babb JA, et al. Sex and estradiol influence glial pro-inflammatory responses to
                   lipopolysaccharide in rats. Psychoneuroendocrinology 2012;37:1688-99.
               99.  Smith AL, Alexander M, Rosenkrantz TS, Sadek ML, Fitch RH. Sex differences in behavioral outcome following neonatal
                   hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp Neurol
                   2014;254:54-67.
               100. Demarest TG, Schuh RA, Waddell J, McKenna MC, Fiskum G. Sex-dependent mitochondrial respiratory impairment and oxidative
                   stress in a rat model of neonatal hypoxic-ischemic encephalopathy. J Neurochem 2016;137:714-29.
               101. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, et al. High-dimensional single-cell mapping of central nervous system
                   immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018:48:599.
               102. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, et al. Single-cell RNA sequencing of microglia throughout the mouse
                   lifespan and in the injured brain reveals complex cell-state changes. Immunity 2019;50:253-71.
               103. Jordão MJC, Sankowski R, Brendecke SM, Sagar, Locatelli G, et al. Single-cell profiling identifies myeloid cell subsets with distinct
                   fates during neuroinflammation. Science 2019;363:6425.
               104. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, et al. A unique microglia type associated with
                   restricting development of Alzheimer’s disease. Cell 2017;169:1276-90.
               105. Laskowitz DT, Thekdi AD, Thekdi SD, Han SK, Myers JK, et al. Downregulation of microglial activation by apolipoprotein E and
                   apoE-mimetic peptides. Exp Neurol 2001;167:74-85.
               106. Lynch JR, Tang W, Wang H, Vitek MP, Bennett ER, et al. APOE genotype and an ApoE-mimetic peptide modify the systemic and
                   central nervous system inflammatory response. J Biol Chem 2003;278:48529-33.
               107. Colton CA, Brown CM, Vitek MP. Sex steroids, APOE genotype and the innate immune system. Neurobiol Aging 2005;26:363-72.
               108. Altmann A, Tian L, Henderson VW, Greicius MD; Alzheimer’s Disease Neuroimaging Initiative Investigators. Sex modifies the
                   APOE-related risk of developing Alzheimer disease. Ann Neurol 2014;75:563-73.
               109. Cambronero FE, Liu D, Neal JE, Moore EE, Gifford KA, et al. APOE genotype modifies the association between central arterial
                   stiffening and cognition in older adults. Neurobiol Aging 2018;67:120-7.
               110. Parhizkar S, Arzberger T, Brendel M, Kleinberger G, Deussing M, et al. Loss of TREM2 function increases amyloid seeding but
                   reduces plaque-associated ApoE. Nat Neurosci 2019;22:191-204.
               111.  Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. The TREM2-APOE pathway drives the transcriptional phenotype of
                   dysfunctional microglia in neurodegenerative diseases. Immunity 2017;47:566-81.
               112. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, et al. Targeting miR-155 restores abnormal microglia and
                   attenuates disease in SOD1 mice. Ann Neurol 2015;77:75-99.
               113. Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, et al. Microglial translational profiling reveals a convergent APOE pathway from
                   aging, amyloid, and tau. J Exp Med 2018;215:2235-45.
   21   22   23   24   25   26   27   28   29   30   31