Page 24 - Read Online
P. 24

Page 20                 Yanguas-Casás. Neuroimmunol Neuroinflammation 2020;7:13-22  I  http://dx.doi.org/10.20517/2347-8659.2019.31

               12.  Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, et al. Synaptic pruning by microglia is necessary for normal brain
                   development. Science 2011;333:1456-8.
               13.  Paolicelli RC, Gross CT. Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol 2011;7:77-83.
               14.  Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, et al. Fate mapping analysis reveals that adult microglia derive from primitive
                   macrophages. Science 2010;330:841-5.
               15.  Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol 2015;6:486.
               16.  Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci
                   2007;10:1387-94.
               17.  Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and
                   epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 2001;238:274-88.
               18.  Schlegelmilch T, Henke K, Peri F. Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 2011;21:5-10.
               19.  Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, et al. Complex invasion pattern of the cerebral cortex bymicroglial cells
                   during development of the mouse embryo. Glia 2013;61:150-63.
               20.  Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, et al. Sall1 is a transcriptional regulator defining microglia identity and
                   function. Nat Immunol 2016;17:1397-406.
               21.  Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-
                   dependent pathways. Nat Neurosci 2013;16:273-80.
               22.  Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, et al. Coupled proliferation and apoptosis maintain the rapid turnover of
                   microglia in the adult brain. Cell Rep 2017;18:391-405.
               23.  Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, et al. The lifespan and turnover of microglia in the human brain. Cell Rep
                   2017;20:779-84.
               24.  Tay TL, Mai D, Dautzenberg J, Fernández-Klett F, Lin G, et al. A new fate mapping system reveals context-dependent random or
                   clonal expansion of microglia. Nat Neurosci 2017;20:793-803.
               25.  Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic
                   inflammation to chronic neurodegeneration. Semin Immunopathol 2013;35:601-12.
               26.  Thion MS, Ginhoux F, Garel S. Microglia and early brain development: an intimate journey. Science 2018;362:185-9.
               27.  VanRyzin JW, Pickett LA, McCarthy MM. Microglia: driving critical periods and sexual differentiation of the brain. Dev Neurobiol
                   2018;78:580-92.
               28.  Lenz KM, McCarthy MM. A starring role for microglia in brain sex differences. Neuroscientist 2015;21:306-21.
               29.  Hanamsagar R, Bilbo SD. Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and
                   neuroinflammation during development. J Steroid Biochem Mol Biol 2016;160:127-33.
               30.  Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, et al. Sex-specific features of microglia from adult mice. Cell Rep 2018;23:3501-11.
               31.  Welberg L. Microglia maketh the male. Nat Rev Neurosci 2013;14:226.
               32.  Garden GA, Campbell BM. Glial biomarkers in human central nervous system disease. Glia 2016;64:1755-71.
               33.  Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci
                   2013;33:2761-72.
               34.  Schafer DP, Lehrman EK, Stevens B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS.
                   Glia 2013;61:24-36.
               35.  Forest MG, Cathiard AM, Bertrand JA. Total and unbound testosterone levels in the newborn and in normal and hypogonadal children:
                   use of a sensitive radioimmunoassay for testosterone. J Clin Endocrinol Metab 1973;36:1132-42.
               36.  Reyes FI, Winter JS, Faiman C. Studies on human sexual development. I. Fetal gonadal and adrenal sex steroids. J Clin Endocrinol
                   Metab 1973;37:74-8.
               37.  Wright CL, McCarthy MM. Prostaglandin E2-induced masculinization of brain and behavior requires protein kinase A, AMPA/
                   kainate, and metabotropic glutamate receptor signaling. J Neurosci 2009;29:13274-82.
               38.  McCarthy MM. Estradiol and the developing brain. Physiol Rev 2008;88:91-124.
               39.  Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, et al. Transcriptional and translational differences of microglia from male
                   and female brains. Cell Rep 2018;24:2773-83.e6.
               40.  Bilbo SD. Sex differences in microglial appetites during development: Inferences and implications. Brain Behav Immun 2017;64:9-10.
               41.  Aanerud J, Borghammer P, Rodell A, Jónsdottir KY, Gjedde A. Sex differences of human cortical blood flow and energy metabolism. J
                   Cereb Blood Flow Metab 2017;37:2433-40.
               42.  Esposito G, Van Horn JD, Weinberger DR, Berman KF. Gender differences in cerebral blood flow as a function of cognitive state with
                   PET. J Nucl Med 1996;37:559-64.
               43.  Satterthwaite TD, Shinohara RT, Wolf DH, Hopson RD, Elliott MA, et al. Impact of puberty on the evolution of cerebral perfusion
                   during adolescence. Proc Natl Acad Sci U S A 2014;111:8643-8.
               44.  Böttcher C, Schlickeiser S, Sneeboer MAM, Kunkel D, Knop A, et al. Human microglia regional heterogeneity and phenotypes
                   determined by multiplexed single-cell mass cytometry. Nat Neurosci 2019;22:78-90.
               45.  Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, et al. Microglial brain region-dependent diversity and selective regional
                   sensitivities to aging. Nat Neurosci 2016;19:504-16.
               46.  Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by
                   deep single-cell rna sequencing. Neuron 2019;101:207-23.e10.
               47.  Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, et al. Spatial and temporal heterogeneity of mouse and human microglia
                   at single-cell resolution. Nature 2019;566:388-92.
               48.  Lee SK. Sex as an important biological variable in biomedical research. BMB Rep 2018;51:167-73.
   19   20   21   22   23   24   25   26   27   28   29