Page 387 - Read Online
P. 387

Yelton et al. Neuroimmunol Neuroinflammation 2018;5:46  I  http://dx.doi.org/10.20517/2347-8659.2018.58             Page 17 of 18


               52.  Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase
                   inhibitor. Exp Cell Res 1998;241:126-33.
               53.  Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits
                   histone deacetylases. Proc Natl Acad Sci U S A 1998;95:3003-7.
               54.  Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5:769-84.
               55.  Bezecny P. Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol 2014;31:985.
               56.  Lee P, Murphy B, Miller R, Menon V, Banik NL, et al. Mechanisms and clinical significance of histone deacetylase inhibitors:
                   epigenetic glioblastoma therapy. Anticancer Res 2015;35:615-25.
               57.  Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy.
                   Cancer Lett 2008;269:7-17.
               58.  Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, et al. Molecularly targeted therapy for malignant glioma.
                   Cancer 2007;110:13-24.
               59.  Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in
                   promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 2004;101:1241-6.
               60.  Kim SW, Hooker JM, Otto N, Win K, Muench L, et al. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic
                   acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Bio 2013;40:912-8.
               61.  Seo YJ, Kang Y, Muench L, Reid A, Caesar S, et al. Image-guided synthesis reveals potent blood-brain barrier permeable histone
                   deacetylase inhibitors. ACS Chem Neurosci 2014;5:588-96.
               62.  Qiu L, Kelso MJ, Hansen C, West ML, Fairlie DP, et al. Anti-tumor activity in vitro and in vivo of selective differentiating agents
                   containing hydroxamate. Brit J Cancer 1999;80:1252-8.
               63.  Gray SG, Qian CN, Furge K, Guo X, Teh BT. Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in
                   cancer cell lines. Int J Oncol 2004;24:773-95.
               64.  Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem
                   cells. J Mol Neurosci 2015;55:7-20.
               65.  Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and
                   triggers autophagy in glioblastoma stem cells. Autophagy 2013;9:1509-26.
               66.  Asklund T, Kvarnbrink S, Holmlund C, Wibom C, Bergenheim T, et al. Synergistic killing of glioblastoma stem-like cells by bortezomib
                   and HDAC inhibitors. Anticancer Res 2012;32:2407-13.
               67.  Xu J, Sampath D, Lang FF, Prabhu S, Rao G, et al. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human
                   glioma slice cultures. J Neurooncol 2011;105:241-51.
               68.  Svechnikova I, Almqvist PM, Ekström TJ. HDAC inhibitors effectively induce cell type-specific differentiation in human glioblastoma
                   cell lines of different origin. Int J Oncol 2008;32:821-7.
               69.  Papi A, Ferreri AM, Rocchi P, Guerra F, Orlandi M. Epigenetic modifiers as anticancer drugs: effectiveness of valproic acid in neural
                   crest-derived tumor cells. Anticancer Res 2010;30:535-40.
               70.  Asklund T, Appelskog IB, Ammerpohl O, Ekström TJ, Almqvist PM. Histone deacetylase inhibitor 4-phenylbutyrate modulates glial
                   fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J
                   Cancer 2004;40:1073-81.
               71.  Eyüpoglu IY, Hahnen E, Tränkle C, Savaskan NE, Siebzehnrübl FA, et al. Experimental therapy of malignant gliomas using the
                   inhibitor of histone deacetylase MS-275. Mol Cancer Ther 2006;5:1248-55.
               72.  Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T
                   cells and enhances immunotherapies in renal and prostate cancer models. PLoS One 2012;7:e30815.
               73.  Sawa H, Murakami H, Kumagai M, Nakasato M, Yamauchi S, et al. Histone deacetylase inhibitor, FK228, induces apoptosis and
                   suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta Neuropathol 2004;107:523-31.
               74.  Wallace GC 4th, Haar CP, Vandergrift WA 3rd, Giglio P, Dixon-Mah YN, et al. Mutli-targetted DATS prevents tumor progression and
                   promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J Neurooncol 2013;114:43-50.
               75.  Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6
                   (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 2003;100:4389-94.
               76.  Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a North
                   central cancer treatment group study. J Clin Oncol 2009;27:2052-8.
               77.  Iwamoto FM, Lamborn KR, Kuhn JG, Wen PY, Yung WK, et al. A phase I/II trial of the histone deacetylase inhibitor romidepsin for
                   adults with recurrent malignant glioma: North American brain tumor consortium study 03-03. Neuro Oncol 2011;13:509-16.
               78.  Weller M, Gorlia T, Cairncross JG, van den Bent MJ, Mason W, et al. Prolonged survival with valproic acid use in the EORTC/NCIC
                   temozolomide trial for glioblastoma. Neurology 2011;77:1156-64.
               79.  Finn OJ. A believer’s overview of cancer immunosurveillance and immunotherapy. J Immunol 2018;200:385-91.
               80.  Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-
                   leukemia effect. Blood 2002;100:1935-47.
               81.  Ullrich E, Koch J, Cerwenka A, Steinle A. New prospects on the NKG2D/NKG2DL system for oncology. Oncoimmunology
                   2013;2:e26097.
               82.  Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, et al. TGF-beta and metalloproteinases differentially suppress
                   NKG2D ligand surface expression on malignant glioma cells. Brain 2006;129:2416-25.
               83.  Kim HJ, Bae SC. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl
                   Res 2011;3:166-79.
               84.  See AP, Parker JJ, Waziri A. The role of regulatory T cells and microglia in the glioblastoma-associated immunosuppression. J
                   Neurooncol 2015;123:405-12.
   382   383   384   385   386   387   388   389   390   391   392