Page 369 - Read Online
P. 369

Page 14 of 15    Gururangan et al. Neuroimmunol Neuroinflammation 2018;5:45  I  http://dx.doi.org/10.20517/2347-8659.2018.44


                   immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 2006;12:4294-305.
               66.  Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to
                   the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007;13:2158-67.
               67.  Mitchell DA, Fecci PE, Sampson JH. Immunotherapy of malignant brain tumors. Immunol Rev 2008;222:70-100.
               68.  Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-
                   macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self
                   antigen. Cancer Immunol Immunother 2006;55:672-83.
               69.  Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J
                   Exp Med 1996;184:465-72.
               70.  Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, et al. Induction of primary carcinoembryonic antigen (CEA)-specific
                   cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. NatBiotechnol 1998;16:364-9.
               71.  Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, et al. Induction of cytotoxic T cell responses and tumor immunity against
                   unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000;6:1011-7.
               72.  Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, et al. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte
                   responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies
                   expressing CEA. Int J Cancer 1999;82:121-4.
               73.  Thornburg C, Boczkowski D, Gilboa E, Nair SK. Induction of cytotoxic T lymphocytes with dendritic cells transfected with human
                   papillomavirus E6 and E7 RNA: implications for cervical cancer immunotherapy. J Immunother 2000;23:412-8.
               74.  Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. Generation of tumor-infiltrating lymphocyte cultures for use in
                   adoptive transfer therapy for melanoma patients. J Immunother 2003;26:332-42.
               75.  Tanchot C, Rosado MM, Agenes F, Freitas AA, Rocha B. Lymphocyte homeostasis. Semin Immunol 1997;9:331-7.
               76.  Grossman Z, Paul WE. Self-tolerance: context dependent tuning of T cell antigen recognition. Semin Immunol 2000;12:197-203.
               77.  Cho BK, Rao VP, Ge Q, Eisen HN, Chen J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into
                   memory T cells. J Exp Med 2000;192:549-56.
               78.  Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, et al. T cell homeostatic proliferation elicits effective antitumor
                   autoimmunity. J Clin Invest 2002;110:185-92.
               79.  Asavaroengchai W, Kotera Y, Mulé JJ. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during
                   early lymphoid recovery. Proc Natl Acad Sci U S A 2002;99:931-6.
               80.  Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, et al. Restoration of immunity in lymphopenic individuals with cancer by
                   vaccination and adoptive T-cell transfer. Nat Med 2005;11:1230-7.
               81.  Hu HM, Poehlein CH, Urba WJ, Fox BA. Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res
                   2002;62:3914-9.
               82.  Khoruts A, Fraser JM. A causal link between lymphopenia and autoimmunity. Immunol Lett 2005;98:23-31.
               83.  Krupica T Jr, Fry TJ, Mackall CL. Autoimmunity during lymphopenia: a two-hit model. Clin Immunol 2006;120:121-8.
               84.  Rosenberg SA. Development of effective immunotherapy for the treatment of patients with cancer. J Am Coll Surg 2004;198:685-96.
               85.  Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, et al. Cutting edge: persistence of transferred lymphocyte clonotypes
                   correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 2004;173:7125-30.
               86.  Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, et al. Adoptive cell transfer therapy following non-myeloablative but
                   lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005;23:2346-57.
               87.  Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor
                   regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 2005;28:53-62.
               88.  Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, et al. Telomere length of transferred lymphocytes correlates with in vivo
                   persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 2005;175:7046-52.
               89.  Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 2003;3:666-75.
               90.  Restifo NP, Rosenberg SA. Use of standard criteria for assessment of cancer vaccines. Lancet Oncol 2005;6:3-4.
               91.  Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, et al. Hematopoietic stem cells promote the expansion and function of
                   adoptively transferred antitumor CD8 T cells. J Clin Invest 2007;117:492-501.
               92.  Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of
                   intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008;26:5233-9.
               93.  Wang LX, Li R, Yang G, Lim M, O’Hara A, et al. Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in
                   lymphodepleted mice lead to tumor regression and editing. Cancer Res 2005;65:10569-77.
               94.  Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, et al. Removal of homeostatic cytokine sinks by lymphodepletion
                   enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005;202:907-12.
               95.  Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion
                   enhances T cell-mediated tumor immunotherapy. Trends Immunol 2005;26:111-7.
               96.  Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, et al. Microbial translocation augments the function of adoptively
                   transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007;117:2197-204.
               97.  Wrzesinski C, Restifo NP. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based
                   anti-tumor immunotherapy. Curr Opin Immunol 2005;17:195-201.
               98.  Finlay JL. The role of high-dose chemotherapy and stem cell rescue in the treatment of malignant brain tumors: a reappraisal. Pediatr
                   Transplant 1999;3:87-95.
               99.  Flores C, Pham C, Snyder D, Yang S, Sanchez-Perez L, et al. Novel role of hematopoietic stem cells in immunologic rejection of
                   malignant gliomas. Oncoimmunology 2015;4:e994374.
   364   365   366   367   368   369   370   371   372   373   374