Page 449 - Read Online
P. 449
Choi et al. Mini-invasive Surg 2021;5:43 https://dx.doi.org/10.20517/2574-1225.2021.73 Page 13 of 14
scoliosis. Medicine (Baltimore) 2017;96:e7648. DOI PubMed PMC
27. Yson SC, Sembrano JN, Santos ER, Luna JT, Polly DW Jr. Does prone repositioning before posterior fixation produce greater lordosis
in lateral lumbar interbody fusion (LLIF)? J Spinal Disord Tech 2014;27:364-9. DOI PubMed
28. Blizzard DJ, Vovos TJ, Gallizzi MA, et al. Interval effect of prone repositioning for posterior spinal instrumentation after lateral
interbody fusion. J Spine Neurosurg 2016;5:1. DOI
29. Guiroy A, Carazzo C, Camino-Willhuber G, et al. Single-position surgery versus lateral-then-prone-position circumferential lumbar
interbody fusion: a systematic literature review. World Neurosurg 2021;151:e379-86. DOI PubMed
30. Sellin JN, Mayer RR, Hoffman M, Ropper AE. Simultaneous lateral interbody fusion and pedicle screws (SLIPS) with CT-guided
navigation. Clin Neurol Neurosurg 2018;175:91-7. DOI PubMed
31. Huntsman KT, Riggleman JR, Ahrendtsen LA, Ledonio CG. Navigated robot-guided pedicle screws placed successfully in single-
position lateral lumbar interbody fusion. J Robot Surg 2020;14:643-7. DOI PubMed PMC
32. Spitz SM, Sandhu FA, Voyadzis JM. Percutaneous "K-wireless" pedicle screw fixation technique: an evaluation of the initial
experience of 100 screws with assessment of accuracy, radiation exposure, and procedure time. J Neurosurg Spine 2015;22:422-31.
DOI PubMed
33. Been E, Kalichman L. Lumbar lordosis. Spine J 2014;14:87-97. DOI PubMed
34. Macario A. What does one minute of operating room time cost? J Clin Anesth 2010;22:233-6. DOI PubMed
35. Tan JM, Macario A. How to evaluate whether a new technology in the operating room is cost-effective from society's viewpoint.
Anesthesiol Clin 2008;26:745-64, viii. DOI PubMed
36. Lucio JC, Vanconia RB, Deluzio KJ, Lehmen JA, Rodgers JA, Rodgers W. Economics of less invasive spinal surgery: an analysis of
hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period.
Risk Manag Healthc Policy 2012;5:65-74. DOI PubMed PMC
37. Hiyama A, Sakai D, Sato M, Watanabe M. The analysis of percutaneous pedicle screw technique with guide wire-less in lateral
decubitus position following extreme lateral interbody fusion. J Orthop Surg Res 2019;14:304. DOI PubMed PMC
38. Castro WH, Halm H, Jerosch J, Malms J, Steinbeck J, Blasius S. Accuracy of pedicle screw placement in lumbar vertebrae. Spine
(Phila Pa 1976) 1996;21:1320-4. DOI PubMed
39. Belmont PJ Jr, Klemme WR, Dhawan A, Polly DW Jr. In vivo accuracy of thoracic pedicle screws. Spine (Phila Pa 1976)
2001;26:2340-6. DOI PubMed
40. Mason A, Paulsen R, Babuska JM, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J
Neurosurg Spine 2014;20:196-203. DOI PubMed
41. Schwarzenbach O, Berlemann U, Jost B, et al. Accuracy of computer-assisted pedicle screw placement. An in vivo computed
tomography analysis. Spine (Phila Pa 1976) 1997;22:452-8. DOI PubMed
42. Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS
members. Spine (Phila Pa 1976) 1993;18:2231-8; discussion 2238-9. DOI PubMed
43. Hiyama A, Katoh H, Sakai D, Sato M, Tanaka M, Watanabe M. Accuracy of percutaneous pedicle screw placement after single-
position versus dual-position insertion for lateral interbody fusion and pedicle screw fixation using fluoroscopy. Asian Spine J 2021.
DOI PubMed
44. Sarwahi V, Wendolowski SF, Gecelter RC, et al. Are we underestimating the significance of pedicle screw misplacement? Spine
(Phila Pa 1976) 2016;41:E548-55. DOI PubMed
45. Aoude AA, Fortin M, Figueiredo R, Jarzem P, Ouellet J, Weber MH. Methods to determine pedicle screw placement accuracy in spine
surgery: a systematic review. Eur Spine J 2015;24:990-1004. DOI PubMed
46. Söyüncü Y, Yildirim FB, Sekban H, Ozdemir H, Akyildiz F, Sindel M. Anatomic evaluation and relationship between the lumbar
pedicle and adjacent neural structures: an anatomic study. J Spinal Disord Tech 2005;18:243-6. PubMed
47. Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-arm, robotic guidance, or freehand technique: a
comparative study. Spine (Phila Pa 1976) 2018;43:E373-8. DOI PubMed
48. Kim BD, Hsu WK, De Oliveira GS Jr, Saha S, Kim JY. Operative duration as an independent risk factor for postoperative
complications in single-level lumbar fusion: an analysis of 4588 surgical cases. Spine (Phila Pa 1976) 2014;39:510-20. DOI PubMed
49. Abbasi H, Murphy CM. Economic performance of oblique lateral lumbar interbody fusion (OLLIF) with a focus on hospital
throughput efficiency. Cureus 2015;7:e292. DOI PubMed PMC
50. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR. Correlation of radiographic parameters and clinical symptoms in adult
scoliosis. Spine (Phila Pa 1976) 2005;30:682-8. DOI PubMed
51. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal
deformity. Spine (Phila Pa 1976) 2005;30:2024-9. DOI PubMed
52. Tan SB, Kozak JA, Dickson JH, Nalty TJ. Effect of operative position on sagittal alignment of the lumbar spine. Spine (Phila Pa 1976)
1994;19:314-8. DOI PubMed
53. Peterson MD, Nelson LM, Mcmanus AC, Jackson RP. The effect of operative position on lumbar lordosis: a radiographic study of
patients under anesthesia in the prone and 90-90 positions. Spine 1995;20:1419-24. PubMed
54. Acosta FL, Liu J, Slimack N, Moller D, Fessler R, Koski T. Changes in coronal and sagittal plane alignment following minimally
invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg
Spine 2011;15:92-6. DOI PubMed
55. Uribe JS, Myhre SL, Youssef JA. Preservation or restoration of segmental and regional spinal lordosis using minimally invasive
interbody fusion techniques in degenerative lumbar conditions: a literature review. Spine (Phila Pa 1976) 2016;41 Suppl 8:S50-8.