Page 10 - Read Online
P. 10

Page 4 of 4            Checcucci et al. Mini-invasive Surg 2021;5:49  https://dx.doi.org/10.20517/2574-1225.2021.98

                   Nephrol 2021;73:165-77.  DOI  PubMed
               4.       Campobasso D, Fiori C, Amparore D, et al. Total anatomical reconstruction during robot-assisted radical prostatectomy in patients
                   with previous prostate surgery. Minerva Urol Nefrol 2019;71:605-11.  DOI  PubMed
               5.       Manfredi M, Fiori C, Amparore D, Checcucci E, Porpiglia F. Technical details to achieve perfect early continence after radical
                   prostatectomy. Minerva Chir 2019;74:63-77.  DOI  PubMed
               6.       Porpiglia F, Amparore D, Checcucci E, et al; for ESUT Research Group. Current use of three-dimensional model technology in
                   urology: a road map for personalised surgical planning. Eur Urol Focus 2018;4:652-6.  DOI  PubMed
               7.       Checcucci E, Amparore D, Fiori C, et al. 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J
                   Urol 2020;38:869-81.  DOI  PubMed
               8.       Porpiglia F, Bertolo R, Checcucci E, et al; ESUT Research Group. Development and validation of 3D printed virtual models for robot-
                   assisted radical prostatectomy and partial nephrectomy: urologists' and patients' perception. World J Urol 2018;36:201-7.  DOI
                   PubMed
               9.       Amparore D, Pecoraro A, Checcucci E, et al. 3D imaging technologies in minimally-invasive kidney and prostate cancer surgery:
                   which is the urologists' perception? Minerva Urol Nephrol 2021.  DOI  PubMed
               10.      Porpiglia F, Checcucci E, Amparore D, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-
                   dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int 2019;123:834-45.  DOI  PubMed
               11.      Porpiglia F, Checcucci E, Amparore D, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using
                   hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol
                   2019;76:505-14.  DOI  PubMed
               12.      Porpiglia F, Checcucci E, Amparore D, et al. Extracapsular extension on neurovascular bundles during robot-assisted radical
                   prostatectomy precisely localized by 3D automatic augmented-reality rendering. J Urol 2020;203:e1297.  DOI
               13.      Porpiglia F, Checcucci E, Amparore D, et al. Artificial intelligence guided 3D automatic augmented-reality images allow to identify
                   the extracapsular extension on neurovascular bundles during robotic prostatectomy. Eur Urol 2021;79:S1560.  DOI
               14.      Checcucci E, Autorino R, Cacciamani GE, et al; Uro-technology and SoMe Working Group of the Young Academic Urologists
                   Working Party of the European Association of Urology. Artificial intelligence and neural networks in urology: current clinical
                   applications. Minerva Urol Nefrol 2020;72:49-57.  DOI  PubMed
               15.      Checcucci E, De Cillis S, Granato S, Chang P, Afyouni AS, Okhunov Z; Uro-technology and SoMe Working Group of the Young
                   Academic Urologists Working Party of the European Association of Urology. Applications of neural networks in urology: a systematic
                   review. Curr Opin Urol 2020;30:788-807.  DOI  PubMed
               16.      Ma R, Vanstrum EB, Lee R, Chen J, Hung AJ. Machine learning in the optimization of robotics in the operative field. Curr Opin Urol
                   2020;30:808-16.  DOI  PubMed  PMC
               17.      Bhandari M, Zeffiro T, Reddiboina M. Artificial intelligence and robotic surgery: current perspective and future directions. Curr Opin
                   Urol 2020;30:48-54.  DOI  PubMed
               18.      Auffenberg GB, Ghani KR, Ramani S, et al; Michigan Urological Surgery Improvement Collaborative. askMUSIC: leveraging a
                   Clinical Registry to develop a new machine learning model to inform patients of prostate cancer treatments chosen by similar men. Eur
                   Urol 2019;75:901-7.  DOI  PubMed  PMC
               19.      Ershad M, Rege R, Majewicz Fey A. Automatic and near real-time stylistic behavior assessment in robotic surgery. Int J Comput
                   Assist Radiol Surg 2019;14:635-43.  DOI  PubMed
               20.      Zia A, Guo L, Zhou L, et al. Novel evaluation of surgical activity recognition models using task-based efficiency metrics. Int J Comput
                   Assist Radiol Surg 2019;14:2155-63.  DOI  PubMed
               21.      Battaglia E, Boehm J, Zheng Y, Jamieson AR, Gahan J, Majewicz Fey A. Rethinking autonomous surgery: focusing on enhancement
                   over autonomy. Eur Urol Focus 2021;7:696-705.  DOI  PubMed
   5   6   7   8   9   10   11   12   13   14   15