Page 36 - Read Online
P. 36

Page 18 of 19            Khokhar et al. Mini-invasive Surg 2022;6:2  https://dx.doi.org/10.20517/2574-1225.2021.97

               105.      Castriota F, Nerla R, Micari A, Squeri A, Cremonesi A. Contrast-zero transcatheter aortic valve replacement for patients with severe
                    renal dysfunction: a single-center experience. JACC Cardiovasc Interv 2018;11:820-2.  DOI  PubMed
               106.      Huded CP, Tuzcu EM, Krishnaswamy A, et al. Association between transcatheter aortic valve replacement and early postprocedural
                    stroke. JAMA 2019;321:2306-15.  DOI  PubMed  PMC
               107.      Kapadia SR, Huded CP, Kodali SK, et al; PARTNER Trial Investigators. Stroke after surgical versus transfemoral transcatheter aortic
                    valve replacement in the PARTNER trial. J Am Coll Cardiol 2018;72:2415-26.  DOI  PubMed
               108.      Pagnesi M, Martino EA, Chiarito M, et al. Silent cerebral injury after transcatheter aortic valve implantation and the preventive role
                    of embolic protection devices: a systematic review and meta-analysis. Int J Cardiol 2016;221:97-106.  DOI  PubMed
               109.      Spaziano M, Francese DP, Leon MB, Généreux P. Imaging and functional testing to assess clinical and subclinical neurological
                    events after transcatheter or surgical aortic valve replacement: a comprehensive review. J Am Coll Cardiol 2014;64:1950-63.  DOI
                    PubMed
               110.      Kahlert P, Al-Rashid F, Döttger P, et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler
                    study. Circulation 2012;126:1245-55.  DOI  PubMed
               111.      Van Mieghem NM, Schipper ME, Ladich E, et al. Histopathology of embolic debris captured during transcatheter aortic valve
                    replacement. Circulation 2013;127:2194-201.  DOI  PubMed
               112.      Stachon P, Kaier K, Heidt T, et al. The use and outcomes of cerebral protection devices for patients undergoing transfemoral
                    transcatheter aortic valve replacement in clinical practice. JACC Cardiovasc Interv 2021;14:161-8.  DOI  PubMed
               113.      Butala NM, Makkar R, Secemsky EA, et al. Cerebral embolic protection and outcomes of transcatheter aortic valve replacement:
                    results from the transcatheter valve therapy registry. Circulation 2021;143:2229-40.  DOI  PubMed  PMC
               114.      Latib A, Mangieri A, Vezzulli P, et al. First-in-man study evaluating the Emblok embolic protection system during transcatheter
                    aortic valve replacement. JACC Cardiovasc Interv 2020;13:860-8.  DOI  PubMed
               115.      Ahmad Y, Howard JP. Meta-analysis of usefulness of cerebral embolic protection during transcatheter aortic valve implantation. Am
                    J Cardiol 2021;146:69-73.  DOI  PubMed  PMC
               116.      Kapadia SR, Krishnaswamy A. Cerebral embolic protection in transcatheter aortic valve replacement: connecting intuition and proof.
                    JACC Cardiovasc Interv 2021;14:169-71.  DOI  PubMed
               117.      Bagur R, Solo K, Alghofaili S, et al. Cerebral embolic protection devices during transcatheter aortic valve implantation: systematic
                    review and meta-analysis. Stroke 2017;48:1306-15.  DOI  PubMed
               118.      Seeger J, Gonska B, Otto M, Rottbauer W, Wöhrle J. Cerebral embolic protection during transcatheter aortic valve replacement
                    significantly reduces death and stroke compared with unprotected procedures. JACC Cardiovasc Interv 2017;10:2297-303.  DOI
                    PubMed
               119.      Testa L, Latib A, Casenghi M, Gorla R, Colombo A, Bedogni F. Cerebral Protection during transcatheter aortic valve implantation:
                    an updated systematic review and meta-analysis. J Am Heart Assoc 2018;7:e008463.  DOI  PubMed  PMC
               120.      Coughlan JJ, Fleck R, O’Connor C, Crean P. Mechanical thrombectomy of embolised native aortic valve post-TAVI. BMJ Case Rep
                    2017;2017:bcr2016218787.  DOI  PubMed  PMC
               121.      D’Anna L, Demir O, Banerjee S, Malik I. Intravenous thrombolysis and mechanical thrombectomy in patients with stroke after
                    TAVI: a report of two cases. J Stroke Cerebrovasc Dis 2019;28:104277.  DOI  PubMed
               122.      Muntané-Carol G, Urena M, Munoz-Garcia A, et al. Late cerebrovascular events following transcatheter aortic valve replacement.
                    JACC Cardiovasc Interv 2020;13:872-81.  DOI  PubMed
               123.      Mangieri A, Montalto C, Poletti E, et al. Thrombotic versus bleeding risk after transcatheter aortic valve replacement: JACC review
                    topic of the week. J Am Coll Cardiol 2019;74:2088-101.  DOI  PubMed
               124.      Baumgartner H, Falk V, Bax JJ, et al; ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of
                    valvular heart disease. Eur Heart J 2017;38:2739-91.  DOI  PubMed
               125.      Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of
                    patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on
                    Clinical Practice Guidelines. J Am Coll Cardiol 2017;70:252-89.  DOI  PubMed
               126.      Chakravarty T, Søndergaard L, Friedman J, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic
                    valves: an observational study. Lancet 2017;389:2383-92.  DOI  PubMed
               127.      Backer O, Dangas GD, Jilaihawi H, et al; GALILEO-4D Investigators. Reduced leaflet motion after transcatheter aortic-valve
                    replacement. N Engl J Med 2020;382:130-9.  DOI  PubMed
               128.      Rosendael PJ, Delgado V, Bax JJ. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-
                    generation devices: a systematic review. Eur Heart J 2018;39:2003-13.  DOI  PubMed
               129.      Sammour Y, Krishnaswamy A, Kumar A, et al. Incidence, predictors, and implications of permanent pacemaker requirement after
                    transcatheter aortic valve replacement. JACC Cardiovasc Interv 2021;14:115-34.  DOI  PubMed
               130.      Auffret V, Puri R, Urena M, et al. Conduction disturbances after transcatheter aortic valve replacement: current status and future
                    perspectives. Circulation 2017;136:1049-69.  DOI  PubMed
               131.      Mangieri A, Lanzillo G, Bertoldi L, et al. Predictors of advanced conduction disturbances requiring a late (≥48 h) permanent
                    pacemaker following transcatheter aortic valve replacement. JACC Cardiovasc Interv 2018;11:1519-26.  DOI  PubMed
               132.      Mauri V, Reimann A, Stern D, et al. Predictors of permanent pacemaker implantation after transcatheter aortic valve replacement
                    with the SAPIEN 3. JACC Cardiovasc Interv 2016;9:2200-9.  DOI  PubMed
               133.      Latsios G, Gerckens U, Buellesfeld L, et al. “Device landing zone” calcification, assessed by MSCT, as a predictive factor for
                    pacemaker implantation after TAVI. Catheter Cardiovasc Interv 2010;76:431-9.  DOI  PubMed
   31   32   33   34   35   36   37   38   39   40   41