Page 209 - Read Online
P. 209

Gholami et al. Mini-invasive Surg 2018;2:44  I  http://dx.doi.org/10.20517/2574-1225.2018.44                                       Page 7 of 9


                   drug delivery. Eur J Pharm Biopharm 2010;74:209-18.
               29.  Hu Z, Mawatari S, Shibata N, Takada K, Yoshikawa H, et al. Application of a biomagnetic measurement system (BMS) to the evaluation of
                   gastrointestinal transit of intestinal pressure-controlled colon delivery capsules (PCDCs) in human subjects. Pharm Res 2000;17:160-7.
               30.  Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging
                   nanoprobe across the blood-brain barrier. Cancer Res 2009;69:6200-7.
               31.  Fang C, Bhattarai N, Sun C, Zhang M. Functionalized nanoparticles with long-term stability in biological media. Small 2009;5:1637-41.
               32.  Yang L, Mao H, Cao Z, Wang YA, Peng X, et al. Molecular imaging of pancreatic cancer in an animal model using targeted
                   multifunctional nanoparticles. Gastroenterology 2009;136:1514-25.
               33.  Kountouras J, Chatzopoulos D, Zavos C. Reactive oxygen metabolites and upper gastrointestinal diseases. Hepatogastroenterology
                   2001;48:743-51.
               34.  Mathew J, Joy J, George SC. Potential applications of nanotechnology in transportation: a review. Available from: https://ac.els-cdn.
                   com/S1018364717310868/1-s2.0-S1018364717310868-main.pdf?_tid=33a4b98f-f2f2-4c7e-977d-ec3172ae82e7&acdnat=1544752051_
                   6aaa641ed07e4ffc5257e487bd9f5c12. [Last accessed on 14 Dec 2018]
               35.  Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP
                   Conf Ser Mater Sci Eng 2017;263:032019.
               36.  Solvang S, Finholt P. Effect of tablet processing and formulation factors on dissolution rate of the active ingredient in human gastric
                   juice. J Pharm Sci 1970;59:49-52.
               37.  Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv
                   Rev 2001;46:75-87.
               38.  Batlle X, Labarta A. Finite-size effects in fine particles: magnetic and transport properties. Available from: http://iopscience.iop.org/artic
                   le/10.1088/0022-3727/35/6/201/pdf. [Last accessed on 14 Dec 2018]
               39.  Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev 2006;35:583-92.
               40.  Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818-22.
               41.  Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a
                   proposed mechanism for tumor blood flow heterogeneity. Microvasc Res 1996;52:27-46.
               42.  Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 2009;6:1041-51.
               43.  Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic
                   accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92.
               44.  Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a
                   review. J Control Release 2000;65:271-84.
               45.  Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery
                   particles. Eur J Cell Biol 2004;83:97-111.
               46.  Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on
                   LNCaP prostate cancer cells. Eur J Pharm Biopharm 2007;67:1-8.
               47.  Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008;25:55-71.
               48.  Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, et al. Direct comparison of liposomal doxorubicin with or without polyethylene
                   glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 1999;5:3645-52.
               49.  Kaasgaard T, Mouritsen OG, Jørgensen K. Screening effect of PEG on avidin binding to liposome surface receptors. Int J Pharm
                   2001;214:63-5.
               50.  Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer
                   nanomedicines. J Drug Target 2007;15:457-64.
               51.  Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9:E128-47.
               52.  Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102.
               53.  Howard MD, Jay M, Dziubla TD, Lu X. PEGylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol
                   2008;4:133-48.
               54.  Kovacevic A, Savic S, Vuleta G, Müller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and
                   NLC): effects on size, physical stability and particle matrix structure. Int J Pharm 2011;406:163-72.
               55.  Cho M, Cho WS, Choi M, Kim SJ, Han BS, et al. The impact of size on tissue distribution and elimination by single intravenous
                   injection of silica nanoparticles. Toxicol Lett 2009;189:177-83.
               56.  Brennan FR, Shaw L, Wing MG, Robinson C. Preclinical safety testing of biotechnology-derived pharmaceuticals: understanding the
                   issues and addressing the challenges. Mol Biotechnol 2004;27:59-74.
               57.  Weinberg WC, Frazier-Jessen MR, Wu WJ, Weir A, Hartsough M, et al. Development and regulation of monoclonal antibody products:
                   challenges and opportunities. Cancer Metastasis Rev 2005;24:569-84.
               58.  Vigor KL, Kyrtatos PG, Minogue S, Al-Jamal KT, Kogelberg H, et al. Nanoparticles functionalized with recombinant single chain Fv
                   antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 2010;31:1307-15.
               59.  Tiernan JP, Ingram N, Marston G, Perry SL, Rushworth JV, et al. CEA-targeted nanoparticles allow specific in vivo fluorescent imaging
                   of colorectal cancer models. Nanomedicine (Lond) 2015;10:1223-31.
               60.  Abdelghany SM, Schmid D, Deacon J, Jaworski J, Fay F, et al. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-
                   4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules
                   2013;14:302-10.
               61.  Fay F, McLaughlin KM, Small DM, Fennell DA, Johnston PG, et al. Conatumumab (AMG 655) coated nanoparticles for targeted pro-
                   apoptotic drug delivery. Biomaterials 2011;32:8645-53.
               62.  da Paz MC, Santos Mde F, Santos CM, da Silva SW, de Souza LB, et al. Anti-CEA loaded maghemite nanoparticles as a theragnostic
   204   205   206   207   208   209   210   211   212   213   214