Page 66 - Read Online
P. 66

Page 350           Estévez-Arias et al. J Transl Genet Genom 2022;6:333-52  https://dx.doi.org/10.20517/jtgg.2022.04

                    mitochondrial membrane potential. Hum Mol Genet 2012;21:150-62.  DOI  PubMed
               66.       Pla-Martín D, Rueda CB, Estela A, et al. Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal
                    mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol Dis 2013;55:140-51.  DOI
                    PubMed
               67.       Pijuan J, Cantarero L, Natera-de Benito D, et al. Mitochondrial dynamics and mitocondria-lysosome contacts in neurogenetic
                    diseases. Front Neurosci 2022;16:784880.  DOI  PubMed  PMC
               68.       Cassereau J, Chevrollier A, Gueguen N, et al. Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-
                    Marie-Tooth disease (CMT2K). Neurogenetics 2009;10:145-50.  DOI  PubMed
               69.       García-Sobrino T, Blanco-Arias P, Palau F, et al. Phenotypical features of a new dominant GDAP1 pathogenic variant (p.R226del) in
                    axonal Charcot-Marie-Tooth disease. Neuromuscul Disord 2017;27:667-72.  DOI  PubMed
               70.       González-Sánchez P, Pla-Martín D, Martínez-Valero P, et al. CMT-linked loss-of-function mutations in GDAP1 impair store-
                            2+
                    operated Ca  entry-stimulated respiration. Sci Rep 2017;7:42993.  DOI  PubMed  PMC
               71.       Cassereau J, Chevrollier A, Codron P, et al. Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth
                    disease type 2K. Exp Neurol 2020;323:113069.  DOI  PubMed
               72.       Kleopa KA, Abrams CK, Scherer SS. How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease? Brain Res
                    2012;1487:198-205.  DOI  PubMed  PMC
               73.       Latour P, Gonnaud PM, Ollagnon E, et al. SIMPLE mutation analysis in dominant demyelinating Charcot-Marie-Tooth disease: three
                    novel mutations. J Peripher Nerv Syst 2006;11:148-55.  DOI  PubMed
               74.       Wang Y, Yin F. A Review of X-linked Charcot-Marie-Tooth Disease. J Child Neurol 2016;31:761-72.  DOI  PubMed
               75.       Abrams CK. GJB1 disorders: Charcot-Marie-Tooth Neuropathy (CMT1X) and central nervous system phenotypes. 1998 Jun 18
                    [updated 2020 Feb 20]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of
                    Washington, 1993-2022.  PubMed
               76.       Siskind CE, Murphy SM, Ovens R, Polke J, Reilly MM, Shy ME. Phenotype expression in women with CMT1X. J Peripher Nerv
                    Syst 2011;16:102-7.  DOI  PubMed
               77.       Dubourg O, Tardieu S, Birouk N, et al. Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-
                    linked Charcot-Marie-Tooth disease. Brain 2001;124:1958-67.  DOI  PubMed
               78.       Tsai PC, Chen CH, Liu AB, et al. Mutational analysis of the 5' non-coding region of GJB1 in a Taiwanese cohort with Charcot-
                    Marie-Tooth neuropathy. J Neurol Sci 2013;332:51-5.  DOI  PubMed
               79.       Hahn AF, Ainsworth PJ, Bolton CF, Bilbao JM, Vallat JM. Pathological findings in the x-linked form of Charcot-Marie-Tooth
                    disease: a morphometric and ultrastructural analysis. Acta Neuropathol 2001;101:129-39.  DOI  PubMed
               80.       Abrams CK, Freidin M. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral
                    nervous systems. Cell Tissue Res 2015;360:659-73.  DOI  PubMed
               81.       Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL. Connexin29 is uniquely distributed within myelinating glial cells of the
                    central and peripheral nervous systems. J Neurosci 2002;22:6458-70.  PubMed  PMC
               82.       Balice-Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 1998;142:1095-104.
                    DOI  PubMed  PMC
               83.       Chandross KJ, Kessler JA, Cohen RI, et al. Altered connexin expression after peripheral nerve injury. Mol Cell Neurosci 1996;7:501-
                    18.  DOI  PubMed
               84.       Scherer S, Deschenes S, Xu Y, Grinspan J, Fischbeck K, Paul D. Connexin32 is a myelin-related protein in the PNS and CNS. J
                    Neurosci 1995;15:8281-94.  PubMed  PMC
               85.       Sutor B, Schmolke C, Teubner B, Schirmer C, Willecke K. Myelination defects and neuronal hyperexcitability in the neocortex of
                    connexin 32-deficient mice. Cereb Cortex 2000;10:684-97.  DOI  PubMed
               86.       Beauvais K, Furby A, Latour P. Clinical, electrophysiological and molecular genetic studies in a family with X-linked dominant
                    Charcot-Marie-Tooth neuropathy presenting a novel mutation in GJB1 Promoter and a rare polymorphism in LITAF/SIMPLE.
                    Neuromuscul Disord 2006;16:14-8.  DOI  PubMed
               87.       Houlden H, Girard M, Cockerell C, et al. Connexin 32 promoter P2 mutations: a mechanism of peripheral nerve dysfunction. Ann
                    Neurol 2004;56:730-4.  DOI  PubMed
               88.       Gonzaga-Jauregui C, Zhang F, Towne CF, Batish SD, Lupski JR. GJB1/Connexin 32 whole gene deletions in patients with X-linked
                    Charcot-Marie-Tooth disease. Neurogenetics 2010;11:465-70.  DOI  PubMed  PMC
               89.       Bicego M, Morassutto S, Hernandez VH, et al. Selective defects in channel permeability associated with Cx32 mutations causing X-
                    linked Charcot-Marie-Tooth disease. Neurobiol Dis 2006;21:607-17.  DOI  PubMed
               90.       Abrams CK, Islam M, Mahmoud R, Kwon T, Bargiello TA, Freidin MM. Functional requirement for a highly conserved charged
                    residue at position 75 in the gap junction protein connexin 32. J Biol Chem 2013;288:3609-19.  DOI  PubMed  PMC
               91.       Jeng LJ, Balice-Gordon RJ, Messing A, Fischbeck KH, Scherer SS. The effects of a dominant connexin32 mutant in myelinating
                    Schwann cells. Mol Cell Neurosci 2006;32:283-98.  DOI  PubMed
               92.       Zimoń M, Baets J, Almeida-Souza L, et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat
                    Genet 2012;44:1080-3.  DOI  PubMed
               93.       Peeters K, Chamova T, Tournev I, Jordanova A. Axonal neuropathy with neuromyotonia: there is a HINT. Brain 2017;140:868-77.
                    DOI  PubMed  PMC
   61   62   63   64   65   66   67   68   69   70   71