Page 48 - Read Online
P. 48

Page 61                   Plössl et al. J Transl Genet Genom 2022;6:46-62  https://dx.doi.org/10.20517/jtgg.2021.39

               18.      Zhang M, Jiang N, Chu Y, et al. Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep 2020;10:2464.  DOI
                   PubMed  PMC
               19.      Zhao Z, Chen Y, Wang J, et al. Age-related retinopathy in NRF2-deficient mice. PLoS One 2011;6:e19456.  DOI  PubMed  PMC
               20.      Grassmann F, Fritsche LG, Keilhauer CN, Heid IM, Weber BH. Modelling the genetic risk in age-related macular degeneration. PLoS
                   One 2012;7:e37979.  DOI  PubMed  PMC
               21.      Wang J, Iacovelli J, Spencer C, Saint-Geniez M. Direct effect of sodium iodate on neurosensory retina. Invest Ophthalmol Vis Sci
                   2014;55:1941-53.  DOI  PubMed  PMC
               22.      Moriguchi M, Nakamura S, Inoue Y, et al. Irreversible photoreceptors and RPE cells damage by intravenous sodium iodate in mice is
                   related to macrophage accumulation. Invest Ophthalmol Vis Sci 2018;59:3476-87.  DOI  PubMed
               23.      Brandl C, Zimmermann SJ, Milenkovic VM, et al. In-depth characterisation of retinal pigment epithelium (RPE) cells derived from
                   human induced pluripotent stem cells (hiPSC). Neuromolecular Med 2014;16:551-64.  DOI  PubMed  PMC
               24.      Nachtigal  AL,  Milenkovic  A,  Brandl  C,  et  al.  Mutation-dependent  pathomechanisms  determine  the  phenotype  in  the
                   bestrophinopathies. Int J Mol Sci 2020;21:1597.  DOI  PubMed  PMC
               25.      Biasella F, Plössl K, Karl C, Weber BHF, Friedrich U. Altered protein function caused by amd-associated variant rs704 links
                   vitronectin to disease pathology. Invest Ophthalmol Vis Sci 2020;61:2.  DOI  PubMed  PMC
               26.      Milenkovic A, Brandl C, Milenkovic VM, et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment
                   epithelium cells. Proc Natl Acad Sci U S A 2015;112:E2630-9.  DOI  PubMed  PMC
               27.      Westenskow PD, Moreno SK, Krohne TU, et al. Using flow cytometry to compare the dynamics of photoreceptor outer segment
                   phagocytosis in iPS-derived RPE cells. Invest Ophthalmol Vis Sci 2012;53:6282-90.  DOI  PubMed  PMC
               28.      Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))
                   Method. Methods 2001;25:402-8.  DOI  PubMed
               29.      R Development Core Team. R: a language and environment for statistical computing. 2010. Available from: http://www.r-project.org/
                   [Last accessed on 25 Oct 2021].
               30.      Ogle DH. FSA: fisheries stock analysis. R package version 0.4.31. 2013. Available from: https://github.com/droglenc/FSA [Last
                   accessed on 25 Oct 2021].
               31.      Fritsche LG, Chen W, Schu M, et al; AMD Gene Consortium. Seven new loci associated with age-related macular degeneration. Nat
                   Genet 2013;45:433-9, 439e1.  DOI  PubMed  PMC
               32.      Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012;33:487-509.
                   DOI  PubMed  PMC
               33.      Chen S, Popp NA, Chan C. Animal models of age-related macular degeneration and their translatability into the clinic. Expert Rev
                   Ophthalmol 2014;9:285-95.  DOI
               34.      Abokyi S, To CH, Lam TT, Tse DY. Central role of oxidative stress in age-related macular degeneration: evidence from a review of
                   the molecular mechanisms and animal models. Oxid Med Cell Longev 2020;2020:7901270.  DOI  PubMed  PMC
               35.      Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: a
                   review of major disease mechanisms. Clin Exp Ophthalmol 2020;48:1043-56.  DOI  PubMed  PMC
               36.      Nashine S, Nesburn AB, Kuppermann BD, Kenney MC. Age-related macular degeneration (AMD) mitochondria modulate epigenetic
                   mechanisms in retinal pigment epithelial cells. Exp Eye Res 2019;189:107701.  DOI  PubMed  PMC
               37.      Catanzaro M, Lanni C, Basagni F, Rosini M, Govoni S, Amadio M. Eye-light on age-related macular degeneration: targeting Nrf2-
                   pathway as a novel therapeutic strategy for retinal pigment epithelium. Front Pharmacol 2020;11:844.  DOI  PubMed  PMC
               38.      Ferrington DA, Ebeling MC, Kapphahn RJ, et al. Altered bioenergetics and enhanced resistance to oxidative stress in human retinal
                   pigment epithelial cells from donors with age-related macular degeneration. Redox Biol 2017;13:255-65.  DOI  PubMed  PMC
               39.      Saini JS, Corneo B, Miller JD, et al. Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular
                   degeneration. Cell Stem Cell 2017;20:635-647.e7.  DOI  PubMed  PMC
               40.      Gong J, Fields MA, Moreira EF, et al. Differentiation of human protein-induced pluripotent stem cells toward a retinal pigment
                   epithelial cell fate. PLoS One 2015;10:e0143272.  DOI  PubMed  PMC
               41.      Cai H, Gong J, Noggle S, et al; NYSCF Global Stem Cell Array Team. Altered transcriptome and disease-related phenotype emerge
                   only after fibroblasts harvested from patients with age-related macular degeneration are differentiated into retinal pigment epithelium.
                   Exp Eye Res 2021;207:108576.  DOI  PubMed
               42.      Gong J, Cai H, Noggle S, et al; NYSCF Global Stem Cell Array Team. Stem cell-derived retinal pigment epithelium from patients
                   with age-related macular degeneration exhibit reduced metabolism and matrix interactions. Stem Cells Transl Med 2020;9:364-76.
                   DOI  PubMed  PMC
               43.      Chang YC, Chang WC, Hung KH, et al. The generation of induced pluripotent stem cells for macular degeneration as a drug screening
                   platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging
                   Neurosci 2014;6:191.  DOI  PubMed  PMC
               44.      Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E, Berinstein DM. Repressed SIRT1/PGC-1α pathway and mitochondrial
                   disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med 2016;14:344.  DOI  PubMed
                   PMC
               45.      Voisin A, Monville C, Plancheron A, Balbous A, Gaillard A, Leveziel N. hRPE cells derived from induced pluripotent stem cells are
                   more sensitive to oxidative stress than ARPE-19 cells. Exp Eye Res 2018;177:76-86.  DOI  PubMed
               46.      Ebeling MC, Geng Z, Kapphahn RJ, et al. Impaired mitochondrial function in iPSC-retinal pigment epithelium with the complement
                   factor H polymorphism for age-related macular degeneration. Cells 2021;10:789.  DOI  PubMed  PMC
   43   44   45   46   47   48   49   50   51   52   53