Page 96 - Read Online
P. 96

Page 421                       Lv. J Transl Genet Genom 2021;5:414-22  https://dx.doi.org/10.20517/jtgg.2021.34

               32.      Lv DJ, Song XL, Huang B, et al. HMGB1 promotes prostate cancer development and metastasis by interacting with brahma-related
                   gene 1 and activating the Akt signaling pathway. Theranostics 2019;9:5166-82.  DOI  PubMed  PMC
               33.      Lin L, Zhong K, Sun Z, Wu G, Ding G. Receptor for advanced glycation end products (RAGE) partially mediates HMGB1-ERKs
                   activation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2012;138:11-22.  DOI  PubMed
               34.      Jiang W, Wang Z, Li X, Fan X, Duan Y. High-mobility group box 1 is associated with clinicopathologic features in patients with
                   hepatocellular carcinoma. Pathol Oncol Res 2012;18:293-8.  DOI  PubMed
               35.      Yao X, Zhao G, Yang H, Hong X, Bie L, Liu G. Overexpression of high-mobility group box 1 correlates with tumor progression and
                   poor prognosis in human colorectal carcinoma. J Cancer Res Clin Oncol 2010;136:677-84.  DOI  PubMed
               36.      Ishiguro H, Nakaigawa N, Miyoshi Y, Fujinami K, Kubota Y, Uemura H. Receptor for advanced glycation end products (RAGE) and
                   its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate 2005;64:92-100.  DOI  PubMed
               37.      Kuniyasu H, Chihara Y, Kondo H, Ohmori H, Ukai R. Amphoterin induction in prostatic stromal cells by androgen deprivation is
                   associated with metastatic prostate cancer. Oncol Rep 2003;10:1863-8.  PubMed
               38.      He Y, Zha J, Wang Y, Liu W, Yang X, Yu P. Tissue damage-associated "danger signals" influence T-cell responses that promote the
                   progression of preneoplasia to cancer. Cancer Res 2013;73:629-39.  DOI  PubMed
               39.      Li T, Gui Y, Yuan T, et al. Overexpression of high mobility group box 1 with poor prognosis in patients after radical prostatectomy.
                   BJU Int 2012;110:E1125-30.  DOI  PubMed
               40.      Huang Z, Zhong Z, Zhang L, et al. Down-regulation of HMGB1 expression by shRNA constructs inhibits the bioactivity of urothelial
                   carcinoma cell lines via the NF-κB pathway. Sci Rep 2015;5:12807.  DOI  PubMed  PMC
               41.      Kishi S, Nishiguchi Y, Honoki K, et al. Role of glycated high mobility group box-1 in gastric cancer. Int J Mol Sci 2021;22:5185.
                   DOI  PubMed  PMC
               42.      Li Y, He J, Zhong D, Li J, Liang H. High-mobility group box 1 protein activating nuclear factor-κB to upregulate vascular endothelial
                   growth factor C is involved in lymphangiogenesis and lymphatic node metastasis in colon cancer. J Int Med Res 2015;43:494-505.
                   DOI  PubMed
               43.      Dhumale SS, Waghela BN, Pathak C. Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of
                   RAGE and its ligand HMGB1 in human breast adenocarcinoma cells. IUBMB Life 2015;67:361-73.  DOI  PubMed
               44.      Su Z, Wang T, Zhu H, et al. HMGB1 modulates Lewis cell autophagy and promotes cell survival via RAGE-HMGB1-Erk1/2 positive
                   feedback during nutrient depletion. Immunobiology 2015;220:539-44.  DOI  PubMed
               45.      Zhang Q, Liu S, Parajuli KR, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition.
                   Oncogene 2017;36:687-99.  DOI  PubMed  PMC
               46.      Thapa D, Ghosh R. Chronic inflammatory mediators enhance prostate cancer development and progression. Biochem Pharmacol
                   2015;94:53-62.  DOI  PubMed
               47.      Simons BW, Durham NM, Bruno TC, et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates
                   prostate cancer progression. J Pathol 2015;235:478-89.  DOI  PubMed  PMC
               48.      Sciarra A, Gentilucci A, Salciccia S, et al. Prognostic value of inflammation in prostate cancer progression and response to therapeutic:
                   a critical review. J Inflamm (Lond) 2016;13:35.  DOI  PubMed  PMC
               49.      Kang R, Tang D, Schapiro NE, et al. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating
                   mitochondrial bioenergetics. Oncogene 2014;33:567-77.  DOI  PubMed  PMC
               50.      Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by
                   HMGB1 and RAGE. Nat Immunol 2007;8:487-96.  DOI  PubMed
               51.      Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H. Receptor for advanced glycation end products-binding COOH-terminal
                   motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 2002;62:4805-11.  PubMed
               52.      Gnanasekar M, Thirugnanam S, Ramaswamy K. Short hairpin RNA (shRNA) constructs targeting high mobility group box-1
                   (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int J Oncol 2009;34:425-31.  PubMed
               53.      Bao JM, He MY, Liu YW, et al. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb
                   phosphorylation and degradation. Am J Cancer Res 2015;5:1741-50.  PubMed  PMC
               54.      Shetty AV, Thirugnanam S, Dakshinamoorthy G, et al. 18α-glycyrrhetinic acid targets prostate cancer cells by down-regulating
                   inflammation-related genes. Int J Oncol 2011;39:635-40.  DOI  PubMed
               55.      Liu J, Jiang G, Yang A, Yang G, Yang W, Fang Y. Molecular mechanism of prostate cancer cell apoptosis induced by busulfan via
                   adjustment of androgen receptor phosphatization. Am J Transl Res 2016;8:4881-91.  PubMed  PMC
               56.      Patek S, Willder J, Heng J, et al. Androgen receptor phosphorylation status at serine 578 predicts poor outcome in prostate cancer
                   patients. Oncotarget 2017;8:4875-87.  DOI  PubMed  PMC
               57.      Verrijdt G, Haelens A, Schoenmakers E, Rombauts W, Claessens F. Comparative analysis of the influence of the high-mobility group
                   box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid
                   receptors. Biochem J 2002;361:97-103.  DOI  PubMed  PMC
               58.      Boonyaratanakornkit V, Melvin V, Prendergast P, et al. High-mobility group chromatin proteins 1 and 2 functionally interact with
                   steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol
                   1998;18:4471-87.  DOI  PubMed  PMC
               59.      Henzler C, Li Y, Yang R, et al. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in
                   prostate cancer. Nat Commun 2016;7:13668.  DOI  PubMed  PMC
               60.      Reebye V, Frilling A, Habib NA, Mintz PJ. Intracellular adaptor molecules and AR signalling in the tumour microenvironment. Cell
                   Signal 2011;23:1017-21.  DOI  PubMed
   91   92   93   94   95   96   97   98   99   100   101