Page 95 - Read Online
P. 95
Lv. J Transl Genet Genom 2021;5:414-22 https://dx.doi.org/10.20517/jtgg.2021.34 Page 420
REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin 2021;71:209-49. DOI PubMed
2. Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol
2012;61:1079-92. DOI PubMed
3. Bianchi ME, Beltrame M. Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and
neoplasia. EMBO Rep 2000;1:109-14. DOI PubMed PMC
4. Czura CJ, Wang H, Tracey KJ. Dual roles for HMGB1: DNA binding and cytokine. J Endotoxin Res 2001;7:315-21. DOI PubMed
5. Ellerman JE, Brown CK, de Vera M, et al. Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 2007;13:2836-48.
DOI PubMed
6. Stros M. HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta 2010;1799:101-13. DOI PubMed
7. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol
2005;5:331-42. DOI PubMed
8. Ueda T, Yoshida M. HMGB proteins and transcriptional regulation. Biochim Biophys Acta 2010;1799:114-8. DOI PubMed
9. Agresti A, Lupo R, Bianchi ME, Muller S. HMGB1 interacts differentially with members of the Rel family of transcription factors.
Biochem Biophys Res Commun 2003;302:421-6. DOI PubMed
10. Štros M, Kučírek M, Sani SA, Polanská E. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the
transactivation of p53-responsive gene promoters. Biochim Biophys Acta Gene Regul Mech 2018;1861:200-10. DOI PubMed
11. Das D, Scovell WM. The binding interaction of HMG-1 with the TATA-binding protein/TATA complex. J Biol Chem
2001;276:32597-605. DOI PubMed
12. Amato J, Cerofolini L, Brancaccio D, et al. Insights into telomeric G-quadruplex DNA recognition by HMGB1 protein. Nucleic Acids
Res 2019;47:9950-66. DOI PubMed PMC
13. Shen X, Li WQ. High-mobility group box 1 protein and its role in severe acute pancreatitis. World J Gastroenterol 2015;21:1424-35.
DOI PubMed PMC
14. Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 2005;15:496-
506. DOI PubMed
15. Srinivasan M, Banerjee S, Palmer A, et al. HMGB1 in hormone-related cancer: a potential therapeutic target. Horm Cancer
2014;5:127-39. DOI PubMed
16. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol
2010;28:367-88. DOI PubMed
17. He C, Sun S, Zhang Y, Xie F, Li S. The role of irreversible electroporation in promoting M1 macrophage polarization via regulating
the HMGB1-RAGE-MAPK axis in pancreatic cancer. Oncoimmunology 2021;10:1897295. DOI PubMed PMC
18. Sharma A, Ray R, Rajeswari MR. Overexpression of high mobility group (HMG) B1 and B2 proteins directly correlates with the
progression of squamous cell carcinoma in skin. Cancer Invest 2008;26:843-51. DOI PubMed
19. Yan HX, Wu HP, Zhang HL, et al. p53 promotes inflammation-associated hepatocarcinogenesis by inducing HMGB1 release. J
Hepatol 2013;59:762-8. DOI PubMed PMC
20. Maeda S, Hikiba Y, Shibata W, et al. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-
associated cancer. Biochem Biophys Res Commun 2007;360:394-400. DOI PubMed
21. Wang C, Peng G, Huang H, et al. Blocking the feedback loop between neuroendocrine differentiation and macrophages improves the
therapeutic effects of enzalutamide (MDV3100) on prostate cancer. Clin Cancer Res 2018;24:708-23. DOI PubMed
22. Rojas A, Delgado-López F, Perez-Castro R, et al. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-
dependent mechanism. Tumour Biol 2016;37:3321-9. DOI PubMed
23. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of
proteins. J Biol Chem 1992;267:14998-5004. PubMed
24. Mercado-Pimentel ME, Onyeagucha BC, Li Q, Pimentel AC, Jandova J, Nelson MA. The S100P/RAGE signaling pathway regulates
expression of microRNA-21 in colon cancer cells. FEBS Lett 2015;589:2388-93. DOI PubMed PMC
25. Kang R, Hou W, Zhang Q, et al. RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death
Dis 2014;5:e1480. DOI PubMed PMC
26. Kwak T, Drews-Elger K, Ergonul A, et al. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis.
Oncogene 2017;36:1559-72. DOI PubMed
27. Sasahira T, Kirita T, Bhawal UK, et al. Receptor for advanced glycation end products (RAGE) is important in the prediction of
recurrence in human oral squamous cell carcinoma. Histopathology 2007;51:166-72. DOI PubMed
28. Zill H, Günther R, Erbersdobler HF, Fölsch UR, Faist V. RAGE expression and AGE-induced MAP kinase activation in Caco-2 cells.
Biochem Biophys Res Commun 2001;288:1108-11. DOI PubMed
29. Elangovan I, Thirugnanam S, Chen A, et al. Targeting receptor for advanced glycation end products (RAGE) expression induces
apoptosis and inhibits prostate tumor growth. Biochem Biophys Res Commun 2012;417:1133-8. DOI PubMed
30. Zhou J, Chen X, Gilvary DL, et al. HMGB1 induction of clusterin creates a chemoresistant niche in human prostate tumor cells. Sci
Rep 2015;5:15085. DOI PubMed PMC
31. Zhao CB, Bao JM, Lu YJ, Zhao T, Zhou XH, Zheng DY, Zhao SC. Co-expression of RAGE and HMGB1 is associated with cancer
progression and poor patient outcome of prostate cancer. Am J Cancer Res 2014;4:369-77. PubMed PMC