Page 95 - Read Online
P. 95

Lv. J Transl Genet Genom 2021;5:414-22  https://dx.doi.org/10.20517/jtgg.2021.34      Page 420

               REFERENCES
               1.       Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36
                   cancers in 185 countries. CA Cancer J Clin 2021;71:209-49.  DOI  PubMed
               2.       Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol
                   2012;61:1079-92.  DOI  PubMed
               3.       Bianchi ME, Beltrame M. Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and
                   neoplasia. EMBO Rep 2000;1:109-14.  DOI  PubMed  PMC
               4.       Czura CJ, Wang H, Tracey KJ. Dual roles for HMGB1: DNA binding and cytokine. J Endotoxin Res 2001;7:315-21.  DOI  PubMed
               5.       Ellerman JE, Brown CK, de Vera M, et al. Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 2007;13:2836-48.
                   DOI  PubMed
               6.       Stros M. HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta 2010;1799:101-13.  DOI  PubMed
               7.       Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol
                   2005;5:331-42.  DOI  PubMed
               8.       Ueda T, Yoshida M. HMGB proteins and transcriptional regulation. Biochim Biophys Acta 2010;1799:114-8.  DOI  PubMed
               9.       Agresti A, Lupo R, Bianchi ME, Muller S. HMGB1 interacts differentially with members of the Rel family of transcription factors.
                   Biochem Biophys Res Commun 2003;302:421-6.  DOI  PubMed
               10.      Štros M, Kučírek M, Sani SA, Polanská E. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the
                   transactivation of p53-responsive gene promoters. Biochim Biophys Acta Gene Regul Mech 2018;1861:200-10.  DOI  PubMed
               11.      Das  D,  Scovell  WM.  The  binding  interaction  of  HMG-1  with  the  TATA-binding  protein/TATA  complex.  J  Biol  Chem
                   2001;276:32597-605.  DOI  PubMed
               12.      Amato J, Cerofolini L, Brancaccio D, et al. Insights into telomeric G-quadruplex DNA recognition by HMGB1 protein. Nucleic Acids
                   Res 2019;47:9950-66.  DOI  PubMed  PMC
               13.      Shen X, Li WQ. High-mobility group box 1 protein and its role in severe acute pancreatitis. World J Gastroenterol 2015;21:1424-35.
                   DOI  PubMed  PMC
               14.      Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 2005;15:496-
                   506.  DOI  PubMed
               15.      Srinivasan M, Banerjee S, Palmer A, et al. HMGB1 in hormone-related cancer: a potential therapeutic target. Horm Cancer
                   2014;5:127-39.  DOI  PubMed
               16.      Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol
                   2010;28:367-88.  DOI  PubMed
               17.      He C, Sun S, Zhang Y, Xie F, Li S. The role of irreversible electroporation in promoting M1 macrophage polarization via regulating
                   the HMGB1-RAGE-MAPK axis in pancreatic cancer. Oncoimmunology 2021;10:1897295.  DOI  PubMed  PMC
               18.      Sharma A, Ray R, Rajeswari MR. Overexpression of high mobility group (HMG) B1 and B2 proteins directly correlates with the
                   progression of squamous cell carcinoma in skin. Cancer Invest 2008;26:843-51.  DOI  PubMed
               19.      Yan HX, Wu HP, Zhang HL, et al. p53 promotes inflammation-associated hepatocarcinogenesis by inducing HMGB1 release. J
                   Hepatol 2013;59:762-8.  DOI  PubMed  PMC
               20.      Maeda S, Hikiba Y, Shibata W, et al. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-
                   associated cancer. Biochem Biophys Res Commun 2007;360:394-400.  DOI  PubMed
               21.      Wang C, Peng G, Huang H, et al. Blocking the feedback loop between neuroendocrine differentiation and macrophages improves the
                   therapeutic effects of enzalutamide (MDV3100) on prostate cancer. Clin Cancer Res 2018;24:708-23.  DOI  PubMed
               22.      Rojas A, Delgado-López F, Perez-Castro R, et al. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-
                   dependent mechanism. Tumour Biol 2016;37:3321-9.  DOI  PubMed
               23.      Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of
                   proteins. J Biol Chem 1992;267:14998-5004.  PubMed
               24.      Mercado-Pimentel ME, Onyeagucha BC, Li Q, Pimentel AC, Jandova J, Nelson MA. The S100P/RAGE signaling pathway regulates
                   expression of microRNA-21 in colon cancer cells. FEBS Lett 2015;589:2388-93.  DOI  PubMed  PMC
               25.      Kang R, Hou W, Zhang Q, et al. RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death
                   Dis 2014;5:e1480.  DOI  PubMed  PMC
               26.      Kwak T, Drews-Elger K, Ergonul A, et al. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis.
                   Oncogene 2017;36:1559-72.  DOI  PubMed
               27.      Sasahira T, Kirita T, Bhawal UK, et al. Receptor for advanced glycation end products (RAGE) is important in the prediction of
                   recurrence in human oral squamous cell carcinoma. Histopathology 2007;51:166-72.  DOI  PubMed
               28.      Zill H, Günther R, Erbersdobler HF, Fölsch UR, Faist V. RAGE expression and AGE-induced MAP kinase activation in Caco-2 cells.
                   Biochem Biophys Res Commun 2001;288:1108-11.  DOI  PubMed
               29.      Elangovan I, Thirugnanam S, Chen A, et al. Targeting receptor for advanced glycation end products (RAGE) expression induces
                   apoptosis and inhibits prostate tumor growth. Biochem Biophys Res Commun 2012;417:1133-8.  DOI  PubMed
               30.      Zhou J, Chen X, Gilvary DL, et al. HMGB1 induction of clusterin creates a chemoresistant niche in human prostate tumor cells. Sci
                   Rep 2015;5:15085.  DOI  PubMed  PMC
               31.      Zhao CB, Bao JM, Lu YJ, Zhao T, Zhou XH, Zheng DY, Zhao SC. Co-expression of RAGE and HMGB1 is associated with cancer
                   progression and poor patient outcome of prostate cancer. Am J Cancer Res 2014;4:369-77.  PubMed  PMC
   90   91   92   93   94   95   96   97   98   99   100