Page 162 - Read Online
P. 162

Sadaf et al. J Transl Genet Genom 2022;6:63-83  https://dx.doi.org/10.20517/jtgg.2021.36  Page 81

                    chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995;86:4250-6.  PubMed
               71.       Lodé L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma.
                    Haematologica 2010;95:1973-6.  DOI  PubMed  PMC
               72.       Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival
                    after conventional-dose chemotherapy. Blood 1998;92:802-9.  PubMed
               73.       Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe
                    Francophone du Myélome. Blood 2007;109:3489-95.  DOI  PubMed
               74.       Gmidène A, Saad A, Avet-Loiseau H. 8p21.3 deletion suggesting a probable role of TRAIL-R1 and TRAIL-R2 as candidate tumor
                    suppressor genes in the pathogenesis of multiple myeloma. Med Oncol 2013;30:489.  DOI  PubMed
               75.       Pratt G. Molecular aspects of multiple myeloma. Mol Pathol 2002;55:273-83.  DOI  PubMed  PMC
               76.       Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol
                    2009;1:a000034.  DOI  PubMed  PMC
               77.       Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by
                    diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007;12:115-30.  DOI  PubMed  PMC
               78.       Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.
                    Cancer Cell 2007;12:131-44.  DOI  PubMed  PMC
               79.       Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002;12:9-18.  DOI
                    PubMed
               80.       Chng WJ, Gonzalez-Paz N, Price-Troska T, et al. Clinical and biological significance of RAS mutations in multiple myeloma.
                    Leukemia 2008;22:2280-4.  DOI  PubMed  PMC
               81.       Patrawala S, Puzanov I. Vemurafenib (RG67204, PLX4032): a potent, selective BRAF kinase inhibitor. Future Oncol 2012;8:509-23.
                    DOI  PubMed
               82.       Bharti AC, Shishodia S, Reuben JM, et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from
                    multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004;103:3175-84.  DOI  PubMed
               83.       Kawano M, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature
                    1988;332:83-5.  DOI  PubMed
               84.       De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B. JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-
                    activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in
                    myeloma cells. Br J Haematol 2000;109:823-8.  DOI  PubMed
               85.       Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin's lymphoma and multiple myeloma to
                    chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 2003;9:316-26.  PubMed
               86.       Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 2004;9:667-76.  DOI
                    PubMed
               87.       Aronson LI, Davenport EL, Giuntoli SG, et al. Autophagy is a key myeloma survival pathway that can be manipulated therapeutically
                    to enhance apoptosis. Blood 2010;116:4083.  DOI
               88.       Tasaka T, Berenson J, Vescio R, et al. Analysis of the p16INK4A, p15INK4B and p18INK4C genes in multiple myeloma. Br J
                    Haematol 1997;96:98-102.  DOI  PubMed
               89.       Uchida T, Kinoshita T, Ohno T, Ohashi H, Nagai H, Saito H. Hypermethylation of p16INK4A gene promoter during the progression
                    of plasma cell dyscrasia. Leukemia 2001;15:157-65.  DOI  PubMed
               90.       Kassambara A, Gourzones-Dmitriev C, Sahota S, et al. A DNA repair pathway score predicts survival in human multiple myeloma:
                    the potential for therapeutic strategy. Oncotarget 2014;5:2487-98.  DOI  PubMed  PMC
               91.       Neri P, Ren L, Gratton K, et al. Bortezomib-induced "BRCAness" sensitizes multiple myeloma cells to PARP inhibitors. Blood
                    2011;118:6368-79.  DOI  PubMed  PMC
               92.       Hu Y, Lin J, Fang H, et al. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma.
                    Leukemia 2018;32:2250-62.  DOI  PubMed  PMC
               93.       Perrot A, Lauwers-Cances V, Corre J, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in
                    multiple myeloma. Blood 2018;132:2456-64.  DOI  PubMed  PMC
               94.       Marchesini M, Fiorini E, Colla S. RNA processing: a new player of genomic instability in multiple myeloma. Oncoscience
                    2017;4:73-4.  DOI  PubMed  PMC
               95.       Fucci C, Resnati M, Riva E, et al. The interaction of the tumor suppressor FAM46C with p62 and FNDC3 proteins integrates protein
                    and secretory homeostasis. Cell Rep 2020;32:108162.  DOI  PubMed
               96.       Colla S, Ong DS, Ogoti Y, et al. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
                    Cancer Cell 2015;27:644-57.  DOI  PubMed  PMC
               97.       Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: old players and new actors. Trends Cancer 2017;3:506-28.  DOI
                    PubMed
               98.       Marchesini M, Ogoti Y, Fiorini E, et al. ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-amplified multiple
                    myeloma. Cancer Cell 2017;32:88-100.e6.  DOI  PubMed  PMC
               99.       Shaffer AL, Emre NC, Lamy L, et al. IRF4 addiction in multiple myeloma. Nature 2008;454:226-31.  DOI  PubMed  PMC
               100.      Greenberg AJ, Walters DK, Kumar SK, Rajkumar SV, Jelinek DF. Responsiveness of cytogenetically discrete human myeloma cell
                    lines to lenalidomide: lack of correlation with cereblon and interferon regulatory factor 4 expression levels. Eur J Haematol
                    2013;91:504-13.  DOI  PubMed  PMC
   157   158   159   160   161   162   163   164   165   166   167