Page 107 - Read Online
P. 107
Page 237 Xu et al. J Transl Genet Genom 2021;5:218-39 https://dx.doi.org/10.20517/jtgg.2021.20
PubMed
130. Sawalha Y, Advani AS. Management of older adults with acute lymphoblastic leukemia: challenges & current approaches. Int J
Hematol Oncol 2018;7:IJH02. DOI PubMed PMC
131. Kozlowski P, Lennmyr E, Ahlberg L, et al; Swedish Adult Acute Lymphoblastic Leukemia Group (SVALL). Age but not
Philadelphia positivity impairs outcome in older/elderly patients with acute lymphoblastic leukemia in Sweden. Eur J Haematol
2017;99:141-9. DOI PubMed
132. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of
IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood
2010;115:5312-21. DOI PubMed PMC
133. Yang H, Zhang H, Luan Y, et al. Non-coding germline GATA3 variants alter chromatin topology and contribute to pathogenesis of
acute lymphoblastic leukemia. Cancer Biology 2020. DOI
134. Herold T, Schneider S, Metzeler KH, et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have
IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica 2017;102:130-8. DOI
PubMed PMC
135. Perez-Andreu V, Roberts KG, Xu H, et al. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in
adolescents and young adults. Blood 2015;125:680-6. DOI PubMed PMC
136. Evans TJ, Milne E, Anderson D, et al. Confirmation of childhood acute lymphoblastic leukemia variants, ARID5B and IKZF1, and
interaction with parental environmental exposures. PLoS One 2014;9:e110255. DOI PubMed PMC
137. Walsh KM, Chokkalingam AP, Hsu LI, et al. Associations between genome-wide Native American ancestry, known risk alleles and
B-cell ALL risk in Hispanic children. Leukemia 2013;27:2416-9. DOI PubMed PMC
138. Walsh KM, de Smith AJ, Chokkalingam AP, et al. GATA3 risk alleles are associated with ancestral components in Hispanic children
with ALL. Blood 2013;122:3385-7. DOI PubMed PMC
139. Xu H, Cheng C, Devidas M, et al. ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment
outcome of childhood acute lymphoblastic leukemia. J Clin Oncol 2012;30:751-7. DOI PubMed PMC
140. Wolfe D, Dudek S, Ritchie MD, Pendergrass SA. Visualizing genomic information across chromosomes with PhenoGram. BioData
Min 2013;6:18. DOI PubMed PMC
141. Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies,
targeted arrays and summary statistics 2019. Nucleic Acids Res 2019;47:D1005-12. DOI PubMed PMC
142. Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children
with acute lymphoblastic leukemia. J Clin Oncol 2015;33:1235-42. DOI PubMed PMC
143. Diouf B, Crews KR, Lew G, et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in
children with acute lymphoblastic leukemia. JAMA 2015;313:815-23. DOI PubMed PMC
144. Fernandez CA, Smith C, Yang W, et al. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood
2015;126:69-75. DOI PubMed PMC
145. Liu C, Yang W, Devidas M, et al. Clinical and genetic risk factors for acute pancreatitis in patients with acute lymphoblastic
leukemia. J Clin Oncol 2016;34:2133-40. DOI PubMed PMC
146. Liu Y, Fernandez CA, Smith C, et al. Genome-wide study links PNPLA3 variant with elevated hepatic transaminase after acute
lymphoblastic leukemia therapy. Clin Pharmacol Ther 2017;102:131-40. DOI PubMed PMC
147. Højfeldt SG, Wolthers BO, Tulstrup M, et al; Nordic Society of Paediatric Haematology Oncology (NOPHO) group. Genetic
predisposition to PEG-asparaginase hypersensitivity in children treated according to NOPHO ALL2008. Br J Haematol
2019;184:405-17. DOI PubMed
148. Liu C, Yang W, Pei D, et al. Genomewide approach validates thiopurine methyltransferase activity is a monogenic pharmacogenomic
trait. Clin Pharmacol Ther 2017;101:373-81. DOI PubMed PMC
149. Tulstrup M, Grosjean M, Nielsen SN, et al. NT5C2 germline variants alter thiopurine metabolism and are associated with acquired
NT5C2 relapse mutations in childhood acute lymphoblastic leukaemia. Leukemia 2018;32:2527-35. DOI PubMed
150. Yang JJ, Cheng C, Devidas M, et al. Genome-wide association study identifies germline polymorphisms associated with relapse of
childhood acute lymphoblastic leukemia. Blood 2012;120:4197-204. DOI PubMed PMC
151. Spear ML, Diaz-Papkovich A, Ziv E, et al. Recent shifts in the genomic ancestry of Mexican Americans may alter the genetic
architecture of biomedical traits. Elife 2020;9:e56029. DOI PubMed PMC
152. Karol SE, Larsen E, Cheng C, et al. Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia. Leukemia
2017;31:1325-32. DOI PubMed PMC
153. Yang JJ, Cheng C, Devidas M, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet
2011;43:237-41. DOI PubMed PMC
154. Zhang H, Liu AP, Devidas M, et al. Association of GATA3 polymorphisms with minimal residual disease and relapse risk in
childhood acute lymphoblastic leukemia. J Natl Cancer Inst 2021;113:408-17. DOI PubMed
155. Jain N, Zhang H, Roberts K G, et al. GATA3 rs3824662A allele is overrepresented in adult patients with Ph-like ALL, especially in
patients with CRLF2 abnormalities. Blood 2017;130:1430.
156. Moriyama T, Nishii R, Perez-Andreu V, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat
Genet 2016;48:367-73. DOI PubMed PMC
157. Greaves M. Childhood leukaemia. BMJ 2002;324:283-7. DOI PubMed PMC
158. Wiemels J, Cazzaniga G, Daniotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999;354:1499-503.