Page 50 - Read Online
P. 50

Bennett. J Transl Genet Genom 2020;4:36-49  I  https://doi.org/10.20517/jtgg.2020.17                                                     Page 49

                   infarction. Physiol Chem Phys 1977;9:175-80.
               103.  Harris DC. Different metal-binding properties of the two sites of human transferrin. Biochemistry 1977;16:560-4.
               104.  Dunne J, Caron A, Menu P, Alayash AI, Buehler PW, et al. Ascorbate removes key precursors to oxidative damage by cell-free haemoglobin
                   in vitro and in vivo. Biochem J 2006;399:513-24.
               105.  Kumar P, Bulk M, Webb A, van der Weerd L, Oosterkamp TH, et al. A novel approach to quantify different iron forms in ex-vivo human
                   brain tissue. Sci Rep 2016;6:38916.
               106.  Langley M, Ghosh A, Charli A, Sarkar S, Ay M, et al. Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative
                   damage, and progressive neurodegeneration in mitopark transgenic mice. Antioxid Redox Signal 2017;27:1048-66.
               107.  Ghosh A, Chandran K, Kalivendi SV, Joseph J, Antholine WE, et al. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s
                   disease model. Free Rad Biol Med 2010;49:1674-84.
               108.  Cheng G, Zielonka M, Dranka B, Kumar SN, Myers CR, et al. Detection of mitochondria-generated reactive oxygen species in cells using
                   multiple probes and methods: Potentials, pitfalls, and the future. J Biol Chem 2018;293:10363-80.
               109.  Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, et al. Teaching the basics of reactive oxygen species and their relevance to cancer
                   biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 2018;15:347-62.
               110.  Siebers EM, Choi MJ, Tinklenberg JA, Beatka MJ, Ayres S, et al. Sdha+/- rats display minimal muscle pathology without significant
                   behavioral or biochemical abnormalities. J Neuropathol Exp Neurol 2018;77:665-72.
               111.  Sethumadhavan S, Whitsett J, Bennett B, Ionova IA, Pieper GM, et al. Increasing tetrahydrobiopterin in cardiomyocytes adversely affects
                   cardiac redox state and mitochondrial function independently of changes in NO production. Free Radic Biol Med 2016;93:1-11.
               112.  Levenberg K. A method for the solution of certain non-linear problems in least squares. Quarterly Applied Mathematics 1944;2:164-8.
               113.  Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Applied Mathematics 1963;11:431-41.
               114.  Kanzow C, Yamashita N, Fukushima M. Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear
                   equations with convex constraints. J Comput Appl Math 2004;172:375-97.
               115.  Cheng G, Pan J, Podsiadly R, Zielonka J, Garces AM, et al. Increased formation of reactive oxygen species during tumor growth: Ex vivo
                   low-temperature EPR and in vivo bioluminescence analyses. Free Radic Biol Med 2020;147:167-74.
               116.  Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron
                   acceptors. Biochim Biophys Acta 1997;1320:217-34.
               117.  Hausladen A, Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 1994;269:29405-8.
               118.  Vasquez-Vivar J, Kalyanaraman B, Kennedy MC. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance
                   investigation. J Biol Chem 2000;275:14064-9.
               119.  Tortora V, Quijano C, Freeman B, Radi R, Castro L. Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and
                   peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radical Biol Med 2007;42:1075-88.
               120.  Bulteau AL, Ikeda-Saito M, Szweda LI. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry
                   2003;42:14846-55.
               121.  Selvaratnam J, Robaire B. Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production. Exp
                   Gerontol 2016;84:12-20.
               122.  Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, et al. Extension of murine life span by overexpression of catalase targeted to
                   mitochondria. Science 2005;308:1909-11.
               123.  Meilhac O, Zhou M, Santanam N, Parthasarathy S. Lipid peroxides induce expression of catalase in cultured vascular cells. J Lipid Res
                   2000;41:1205-13.
               124.  Bai J, Rodriguez AM, Melendez JA, Cederbaum AI. Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2
                   cells against oxidative injury. J Biol Chem 1999;274:26217-24.
               125.  Dimmock D, Tang LY, Schmitt ES, Wong LJ. Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem
                   2010;56:1119-27.
               126.  Sharma A, Gaidamakova EK, Matrosova VY, Bennett B, Daly MJ, et al. Responses of Mn2+ speciation in Deinococcus radiodurans and
                   Escherichia coli to γ-radiation by advanced paramagnetic resonance methods. Proc Natl Acad Sci U S A 2013;110:5945-50.
   45   46   47   48   49   50   51   52   53   54   55