Page 31 - Read Online
P. 31

Franz et al. J Transl Genet Genom 2020;4:50-70  I  https://doi.org/10.20517/jtgg.2020.13                                                 Page 69

                   Hum Genet 2018;63:971-80.
               169. Alkhateeb AM, Aburahma SK, Habbab W, Thompson IR. Novel mutations in WWOX, RARS2, and C10orf2 genes in consanguineous
                   Arab families with intellectual disability. Metab Brain Dis 2016;31:901-7.
               170. Cassandrini D, Cilio MR, Bianchi M, Doimo M, Balestri M, et al. Pontocerebellar hypoplasia type 6 caused by mutations in RARS2:
                   definition of the clinical spectrum and molecular findings in five patients. J Inherit Metab Dis 2013;36:43-53.
               171. Li Z, Schonberg R, Guidugli L, Johnson AK, Arnovitz S, et al. A novel mutation in the promoter of RARS2 causes pontocerebellar
                   hypoplasia in two siblings. J Hum Genet 2015;60:363-9.
               172. Rankin J, Brown R, Dobyns WB, Harington J, Patel J, et al. Pontocerebellar hypoplasia type 6: a British case with PEHO-like features.
                   Am J Med Genet A 2010;152A:2079-84.
               173. Tzagoloff A, Shtanko A. Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by
                   separate genes. Eur J Biochem 1995;230:582-6.
               174. Martinez-Dominguez MT, Justesen J, Kruse TA, Hansen LL. Assignment of the human mitochondrial tryptophanyl-tRNA synthetase
                   (WARS2) to 1p13.3-->p13.1 by radiation hybrid mapping. Cytogenet Cell Genet 1998;83:249-50.
               175. Theisen BE, Rumyantseva A, Cohen JS, Alcaraz WA, Shinde DN, et al. Deficiency of WARS2, encoding mitochondrial tryptophanyl
                   tRNA synthetase, causes severe infantile onset leukoencephalopathy. Am J Med Genet A 2017;173:2505-10.
               176. Wortmann SB, Timal S, Venselaar H, Wintjes LT, Kopajtich R, et al. Biallelic variants in WARS2 encoding mitochondrial tryptophanyl-
                   tRNA synthase in six individuals with mitochondrial encephalopathy. Hum Mutat 2017;38:1786-95.
               177. Boccaletto P, Machnicka MA, Purta E, Piątkowski P, Bagiński B, et al. MODOMICS: a database of RNA modification pathways. 2017
                   update. Nucleic Acids Res 2018;46:D303-7.
               178. Ogura T, Tomoyasu T, Yuki T, Morimura S, Begg KJ, et al. Structure and function of the ftsH gene in Escherichia coli. Res Microbiol
                   1991;142:279-82.
               179. Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, et al. RNA methylation under heat shock control. Mol Cell 2000;6:349-60.
               180. Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, et al. Defects in tRNA anticodon loop 2’-O-Methylation are implicated in
                   nonsyndromic X-linked intellectual disability due to mutations in FTSJ1. Hum Mutat 2015;36:1176-87.
               181. Marchand V, Pichot F, Thuring K, Ayadi L, Freund I, et al. Next-generation sequencing-based ribomethseq protocol for analysis of tRNA
                   2’-O-Methylation. Biomolecules 2017;7:13.
               182. Panebianco F, Kelly LM, Liu P, Zhong S, Dacic S, et al. THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in
                   thyroid cancer. Proc Natl Acad Sci U S A 2017;114:2307-12.
               183. Takano K, Nakagawa E, Inoue K, Kamada F, Kure S, et al. A loss-of-function mutation in the FTSJ1 gene causes nonsyndromic X-linked
                   mental retardation in a Japanese family. Am J Med Genet B Neuropsychiatr Genet 2008;147B:479-84.
               184. Honda S, Hayashi S, Imoto I, Toyama J, Okazawa H, et al. Copy-number variations on the X chromosome in Japanese patients with
                   mental retardation detected by array-based comparative genomic hybridization analysis. J Hum Genet 2010;55:590-9.
               185. Bonnet C, Gregoire MJ, Brochet K, Raffo E, Leheup B, et al. Pure de-novo 5 Mb duplication at Xp11.22-p11.23 in a male. J Hum Genet
                   2006;51:815.
               186. El-Hattab AW, Bournat J, Eng PA, Wu JBS, Walker BA, et al. Microduplication of Xp11.23p11.3 with effects on cognition, behavior, and
                   craniofacial development. Clin Genet 2011;79:531-8.
               187. Froyen G, Bauters M, Boyle J, van Esch H, Govaerts K, et al. Loss of SLC38A5 and FTSJ1 at Xp11.23 in three brothers with non-
                   syndromic mental retardation due to a microdeletion in an unstable genomic region. Hum Genet 2007;121:539-47.
               188. Torres AG, Pineyro D, Rodriguez-Escriba M, Camacho N, Reina O, et al. Inosine modifications in human tRNAs are incorporated at the
                   precursor tRNA level. Nucleic Acids Res 2015;43:5145-57.
               189. Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, et al. Mammalian ALKBH8 possesses tRNA methyltransferase
                   activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol
                   2010;30:1814-27.
               190. van den Born E, Vagbo CB, Songe-Moller L, Leihne V, Lien GF, et al. ALKBH8-mediated formation of a novel diastereomeric pair of
                   wobble nucleosides in mammalian tRNA. Nat Commun 2011;2:172.
               191. Philipp M, John F, Ringli C. The cytosolic thiouridylase CTU2 of Arabidopsis thaliana is essential for posttranscriptional thiolation of
                   tRNAs and influences root development. BMC Plant Biol 2014;14:109.
               192. Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, et al. A genome-wide screen identifies the evolutionarily conserved
                   KEOPS complex as a telomere regulator. Cell 2006;124:1155-68.
               193. Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV, et al. The highly conserved KEOPS/EKC complex is essential for a universal tRNA
                   modification, t6A. EMBO J 2011;30:873-81.
               194. Huang B, Johansson MJ, Bystrom AS. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA
                   2005;11:424-36.
               195. Esberg A, Huang B, Johansson MJ, Bystrom AS. Elevated levels of two tRNA species bypass the requirement for elongator complex in
                   transcription and exocytosis. Mol Cell 2006;24:139-48.
               196. Simos G, Tekotte H, Grosjean H, Segref A, Sharma K, et al. Nuclear pore proteins are involved in the biogenesis of functional tRNA.
                   EMBO J 1996;15:2270-84.
               197. Lecointe F, Simos G, Sauer A, Hurt EC, Motorin Y, et al. Characterization of yeast protein Deg1 as pseudouridine synthase (Pus3)
                   catalyzing the formation of psi 38 and psi 39 in tRNA anticodon loop. J Biol Chem 1998;273:1316-23.
               198. Paiva ARB, Lynch DS, Melo US, Lucato LT, Freua F, et al. PUS3 mutations are associated with intellectual disability,
   26   27   28   29   30   31   32   33   34   35   36